Фильтр вч схема

Общий принцип построения пассивных LC-фильтров (ФНЧ и ФВЧ)

Когда в цепи необходимо подавить переменные токи определенного частотного спектра, но при этом эффективно пропустить токи с частотами, находящимися выше или ниже этого спектра, может пригодиться пассивный LC-фильтр на реактивных элементах — фильтр нижних частот ФНЧ (если необходимо эффективно пропустить колебания с частотой ниже заданной) или фильтр верхних частот ФВЧ (при необходимости эффективно пропустить колебания с частотой выше заданной).

Принцип построения данных фильтров основывается на свойствах индуктивностей и емкостей по разному вести себя в цепях переменного тока.

Общеизвестно, что индуктивное сопротивление катушки прямо пропорционально частоте тока, проходящего через нее, следовательно чем выше частота тока, текущего через катушку, — тем большее реактивное сопротивление она этому току оказывает, то есть сильнее задерживает переменные токи на частотах более высоких и легче пропускает токи с частотами более низкими.

Конденсатор — напротив – чем выше частота тока — тем легче данный переменный ток через него проникает, а чем ниже частота тока — тем большим препятствием для тока оказывается этот конденсатор. Схематически фильтры нижних и верхних частот бывают Г-образными, Т-образными и П-образными (многозвенными).

Г-образный фильтр — элементарный электронный фильтр, состоящий из катушки индуктивностью L и конденсатора емкостью C. Амплитудно-частотная характеристика такой цепи зависит от порядка соединения двух элементов (L и C) относительно той точки, куда подается фильтруемый сигнал и от величин L и C.

Практически величины L и C подбираются так, чтобы их реактивные сопротивления в рабочем диапазоне частот были бы примерно в 100 раз меньше сопротивления нагрузки, дабы сильно понизить шунтирующее действие последней на АЧХ фильтра.

Частота, на которой амплитуда подаваемого на фильтр сигнала снижается до 0,7 от своего первоначального значения, называется частотой среза (спада). Идеальный фильтр обладает вертикально крутым спадом.

Итак, в зависимости от последовательности соединения катушки индуктивности L и конденсатора C относительно источника сигнала и нулевой шины, получится фильтр верхних частот — ФВЧ или фильтр нижних частот — ФНЧ.

Фактически эти цепи представляют собой делители напряжения, причем в плечах делителя установлены реактивные элементы, сопротивления которых для переменного тока зависят от частоты.

Здесь можно легко вычислить падения напряжений на каждом из элементов фильтра, приняв во внимание, что на частоте среза падение напряжения на выходе фильтра должно быть равно 0,7 амплитуды входного напряжения. Значит соотношение между реактивными сопротивлениями должно быть 0,3/0,7 — исходя из данного соотношения рассчитывается делитель, составляющий фильтр.

При разомкнутой цепи нагрузки, в фильтрах нижних частот при превышении частотой входного сигнала частоты резонанса LC-цепи фильтра, амплитуда на выходе начинает резко снижаться. В фильтрах верхних частот при понижении частоты входного сигнала ниже частоты резонанса LC-цепи фильтра, амплитуда на выходе также начинает падать. На практике LC-фильтры как таковые без нагрузки не используются.

Для того чтобы ослабить шунтирующее действие фильтра на чувствительные цепи, подключенные за ним, применяют Т-образные фильтры. Здесь к Г-образному звену, со стороны его выхода, добавляется дополнительный реактивный элемент.

Практически рассчитанная для Г-образного LC-фильтра емкость или индуктивность заменяется последовательным включением пары одинаковых элементов, чтобы их суммарное реактивное сопротивление было бы равно расчетному элементу, который заменяется на данную пару (ставят две вдвое меньших индуктивности или два вдвое больших по емкости конденсатора).

Добавляя дополнительный элемент к Г-образному звену, но не сзади, а спереди, получают П-образный фильтр. Такая схема сильнее шунтирует источник входного сигнала. Здесь добавляемый элемент составляет половину расчетной для Г-образного звена емкости (которая просто делится на два емкостных элемента) либо удвоенную величину индуктивности, которая теперь получается параллельным включением двух катушек.

Чем больше в фильтре звеньев — тем точнее получится фильтрация. В итоге наибольшую амплитуду на нагрузке будет иметь та частота, которая для данного фильтра окажется ближе всего к его резонансной частоте (условие – индуктивная составляющая звена равна на этой частоте его емкостной составляющей), остальная часть спектра будет подавлена.

Применение многозвенных фильтров делает возможным очень точно выделять сигнал нужной частоты из зашумленного сигнала. Даже если амплитуда на частоте среза относительно мала, остальная часть диапазона будет подавлена общим действием звеньев фильтра.

Фильтры нижних и высших частот

Фильтр нижних частот (ФНЧ) – электрическая цепь, эффективно пропускающая частотный спектр сигнала ниже определённой частоты, называемой частотой среза, и подавляющая сигнал выше этой частоты.

Фильтр высших частот (ФВЧ) – электрическая цепь, эффективно пропускающая частотный спектр сигнала выше частоты среза, и подавляющая сигнал ниже этой частоты.

Рассмотрим в качестве фильтра простейшую цепь RC, принцип работы которой основан на зависимости реактивного сопротивления конденсатора от частоты сигнала.

Если к источнику переменного синусоидального напряжения U частотой f подключить последовательно резистор сопротивлением R и конденсатор ёмкостью C, падение напряжения на каждом из элементов можно вычислить исходя из коэффициента деления с импедансом Z.

Импеданс – комплексное (полное) сопротивление цепи для гармонического сигнала.
Z² = R² + X² ; Z = √(R² + X²) , где Х – реактивное сопротивление.

Тогда на выводах резистора напряжение UR будет составлять:

XC – реактивное сопротивление конденсатора, равное 1/2πfC

При равенстве R = XC на частоте f, выражение упростится сокращением R и примет вид:

Следовательно, на частоте f равенство активного и реактивного сопротивлений цепочки RC обеспечит одинаковую амплитуду переменного синусоидального напряжения на каждом из элементов в √2 раз меньше входного напряжения, что составляет приблизительно 0.7 от его значения.
В этом случае частота f определится исходя из сопротивления R и ёмкости С выражением:

Повышение частоты уменьшит реактивное сопротивление конденсатора и падение напряжение на нём, тогда напряжение на выводах резистора возрастёт. Соответственно, понижение частоты увеличит напряжение на конденсаторе и уменьшит на резисторе.

Зависимость амплитуды переменного напряжения от его частоты называют амплитудно-частотной характеристикой (АЧХ).

Если рассмотреть АЧХ напряжения на выводах конденсатора или резистора в RC цепи, можно наблюдать на частоте f = 1/(2π τ) спад уровня до значения 0.7, что соответствует -3db по логарифмической шкале.

Следовательно, цепь RC может быть использована как фильтр нижних частот (ФНЧ) – красная линия на рисунке, или фильтр высших частот (ФВЧ) – синяя линия.

Ниже представлены схемы включения RC-цепочек в качестве фильтров соответственно ФНЧ и ФВЧ.

Частоту f = 1/(2π τ) называют граничной частотой fгр или частотой среза fср фильтра.

Частоту среза фильтра можно посчитать с помощью онлайн калькулятора

Достаточно вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Похожие страницы с расчётами:

Замечания и предложения принимаются и приветствуются!

Фильтр вч схема

Первая схема с неинвертирующим включением ОУ, вторая – с инвертирующим.
Это фильтр первого порядка с ослаблением ненужного сигнала – крутизной – 6дБ на октаву. Определить частоту среза можно, рассчитывая реактивное сопротивление конденсатора. Когда оно станет равным сопротивлению резистора, включенного последовательно с конденсатором – это будет самое то.
Формула следующая:

Где F – частота в Герцах, C – емкость в Фарадах, Ec – сопротивление в Омах.
Если крутизна фильтра первого порядка кажется недостаточной, можно справить фильтр второго порядка – с крутизной 12 дБ на октаву как показано на рисунке.

Это – так называемый, фильтр Баттерворта. Назван так, в честь товарища Баттерворта, который изобрел много чего математического, в том числе функции полиномиального вида, которыми впоследствии физики описали АЧХ и прочие физические проявления природы. (Спасибо Оля-ля за уточнение личности гражданина Баттерворта.)
Чтобы посчитать его граничную частоту можно воспользоваться следующими соотношениями:
R1=R2; С1=2С2;

При выборе резисторов надо учесть, что их номиналы должны лежать в пределах 10-100 кОм, поскольку выходное сопротивление фильтра растет вместе с частотой и если номиналы резисторов выходят за вышеуказанные рамки это может сказаться на работе фильтра. Отрицательно, разумеется – иначе зачем предупреждать?

Фильтр Низких Частот (ФНЧ, Low-Pass – как угодно)
Работа этого фильтра прямо противоположна предыдущему – он отрезает сигнал, частота которого выше частоты среза. В принципе, все то же самое, что и в предыдущем случае, только конденсатор включается не последовательно с резистором, а параллельно ему.

Первая схема – неинвертирующее включение, вторая – инвертирующее. Частота среза считается ровно таким же способом, как и в случае ФВЧ.

Ну и схема фильтра второго порядка – того же самого гражданина Баттерворта.

Опять же – считается все точно так же, как было описано выше.

Полосовой Фильтр (Band-Pass)
Полосовой фильтр применяется в тех случаях, когда необходимо выделить некую полосу частот из всего спектра. Например, в спектроанализаторах или вроде того.

Формулы расчета приводить тут не буду – дюже они забористые. Для расчета полосовых фильтром советую воспользоваться замечательной программой – Filter Wiz Pro от Schematica Software. Впрочем, ей так же можно воспользоваться и для расчетов любых других фильтров.

Фильтр-пробка (Notch Filter)
Если вам нужно ослабить (практически до нуля) некую выбранную частоту, то это фильтр как раз для вас.

Формула расчета вот такая:

где R=R3=R4, C=C1=C2;
При построении этого фильтра очень важна точность номиналов компонентов – от этого зависит степень “убивания” выбранной частоты. Так, при применении резисторов и конденсаторов с допуском 1%, можно получить ослабление частоты до 45дБ, хотя, теоретически, можно добиться и 60дБ. Например, если вы хотите грохнуть ненавистную всем частоту 50Гц, то берем следующие номиналы: R1=R2=10кОм, R3=R4=68кОм, С1=С2=47нФ.

Фильтр-пробка с двойным Т-мостом.

С помощью этого фильтра можно не только ослаблять выбранную частот, но и регулировать степень её ослабления переменным резистором R4. Формула расчета номиналов такая же, как и в предыдущем случае.

С фильтрами все, в следующей части еще кое-что интересное.

Схемы пассивных LC фильтров

Наиболее известными пассивными фильтрами являются LC фильтры, названные так потому, что строятся при помощи индуктивностей L и емкостей C. В настоящее время наиболее распространены сетевые фильтры или антенные фильтры.

Простейшим LC фильтром является колебательный контур, в котором могут возникать затухающие колебания, но нас интересует то его свойство, что LC-контур обладает частотной зависимостью коэффициента передачи. Колебательный контур может быть использован для реализации полосового фильтра. На рисунке 1 приведена схема параллельного колебательного контура, реализующая простейший пассивный LC фильтр.


Рисунок 1. Схема пассивного полосового фильтра на параллельном колебательном контуре

Пример амплитудно-частотной характеристики приведенной на рисунке 1 схемы LC фильтра приведен на рисунке 2.


Рисунок 2. Амплитудно-частотная характеристика схемы пассивного фильтра на параллельном контуре

По графику амплитудно-частотной характеристики данного LC фильтра можно определить, что его схема обладает одним полюсом и двумя нулями коэффициента передачи. Один ноль АЧХ соответствует нулевой частоте (постоянному току). Он определяется нулевым сопротивлением индуктивности на нулевой частоте. Второй ноль АЧХ приходится на частоту, равную бесконечности. Этот ноль соответствует нулевому сопротивлению конденсатора на бесконечной частоте. Именно наличием нулей объясняется несимметричность амплитудно-частотной характеристики полосовых LC фильтров. Во всех рассуждениях принимается, что конденсаторы и индуктивности идеальны, в реальных схемах LC фильтров придется учитывать паразитные составляющие элементов схемы.

На графике амплитудно-частотной характеристики пассивного фильтра, приведенной на рисунке 2, отчетливо видна несимметричность, которую приходится учитывать при переходе от полосового фильтра к ФНЧ-прототипу. Еще одна особенность, которая бросается в глаза на данном графике, это коэффициент передачи, больший единицы. В приведенном примере более 50 дБ. Выходной сигнал больше входного почти в тысячу раз! Пассивный LC фильтр обладает усилением? Нет и еще раз нет! Увеличено выходное напряжение, но ток при этом уменьшен. Просто этот фильтр трансформирует сопротивление. Его входное сопротивление меньше выходного. Параллельный контур нельзя шунтировать малым сопротивлением. LC фильтр, показанный на рисунке 1, работает подобно обычному трансформатору напряжения.

Полюс в схеме пассивного фильтра, приведенной на рисунке 1, реализуется параллельным LC контуром. Поэтому остановимся на свойствах параллельного контура подробнее. Известно, что в параллельном контуре возникает резонанс на частоте, определяемой следующей формулой:

(1),

Именно эта резонансная частота LC контура определяет частоту полюса пассивного фильтра. Следующим важным параметром параллельного LC контура (и полюса передачи разрабатываемого LC фильтра) является добротность. Добротность параллельного LC контура определяется как отношение его резонансной частоты к полосе пропускания амплитудно-частотной характеристики по уровню 3 дБ:

(2),

В схеме пассивного LC фильтра, приведенной на рисунке 1, добротность контура определяет, насколько напряжение на выходе схемы будет больше напряжения, поданного на его вход. Одновременно на выходе схемы уменьшится ток, отдаваемый в нагрузку.

Добротность параллельного LC контура зависит от многих факторов. Различают конструктивную добротность контура и нагруженную добротность. Конструктивная добротность зависит от качества исполнения элементов контура (индуктивностей и конденсаторов), а нагруженная добротность LC контура учитывает влияние сопротивления нагрузки.

(3),

Следует отметить, что схема пассивного LC фильтра, приведенная на рисунке 1, реализует не только полюс амплитудно-частотной характеристики, но и два нуля. Конденсатор C1 обеспечивает нулевой коэффициент передачи на частоте, стремящейся к бесконечности. Индуктивность L1 обеспечивает нулевой коэффициент передачи фильтра на нулевой частоте (постоянном токе). Подобная схема LC фильтра подходит для реализации полосовых фильтров Баттерворта и фильтров Чебышева.

Подобным же образом может работать и последовательный LC контур. Для этого он должен быть подключен между источником сигнала и нагрузкой. Пример включения последовательного LC контура для реализации полюса передачи амплитудно-частотной характеристики приведен на рисунке 3.


Рисунок 3. Схема LC фильтра на последовательном колебательном контуре

Особенность данной схемы пассивного фильтра заключается в том, что сопротивление источника сигнала R1 и нагрузки R2 должны быть как можно меньше при реализации полюса большей добротности. Это связано с тем, что в схеме LC фильтра, реализованной на последовательном контуре, используется резонанс токов.

Амплитудно-частотная характеристика пассивного фильтра, реализованного на последовательном LC контуре, ничем не отличается от АЧХ фильтра, реализованного на параллельном LC контуре. Амплитудно-частотная характеристика, приведенная на рисунке 2, может быть получена и схемой LC фильтра, приведенной на рисунке 3.

Для реализации фильтра низких частот LC контур в схеме пассивного фильтра можно включить немного по-другому. Например, так, как показано на рисунке 4.


Рисунок 4. Схема пассивного фильтра на LC контуре

В этом случае нули функции передачи, формируемые индуктивностью L1, и ёмкостью C1, совпадут и будут расположены на частоте, равной бесконечности. Амплитудно-частотная характеристика при этом преобразуется к виду, приведенному на рисунке 5.


Рисунок 5. Амплитудно-частотная характеристика схемы пассивного НЧ фильтра на LC контуре

Подобная схема пассивного фильтра подходит для реализации фильтра низких частот с аппроксимацией АЧХ по Баттерворту или Чебышеву. Тем не менее, LC фильтр c АЧХ, показанной на рисунке 5 (очень высокая добротность контура), может использоваться как полосовой фильтр, приводящий сопротивление нагрузки к сопротивлению источника сигнала.

Аналогичным образом может быть реализована схема LC фильтра высоких частот. Для реализации фильтра высоких частот в схеме пассивного фильтра необходимо оба нуля фунции передачи передвинуть на нулевую частоту (постоянный ток). Для этого схему LC контура включают следующим образом:


Рисунок 6. Схема пассивного фильтра высоких частот на LC контуре

Амплитудно-частотная характеристика данной схемы LC фильтра приобретает вид, показанный на рисунке 7. Естественно, для фильтра высоких частот обычно добротность выбирается меньше показанной на рисунке, и тогда она приобретает вид АЧХ фильтра Чебышева или Баттерворта.


Рисунок 7. Амплитудно-частотная характеристика схемы пассивного ВЧ фильтра на LC контуре

Наличия полюсов достаточно для реализации фильтров Чебышева, Баттерворта и Бесселя. Все рассмотренные выше схемы являются цепями второго порядка. Для реализации LC фильтров более высокого порядка их можно соединять последовательно. В качестве примера на рисунке 7 приведены схемы пассивных LC фильтров низкой частоты.





Рисунок 8. Схемы пассивных LC фильтров низкой частоты

Точно так же реализуются и фильтры Чебышева, Баттерворта и Бесселя высокой частоты. Отличие заключается в том, что индуктивность пересчитывается в емкость, а емкость пересчитывается в индуктивность. Полученные схемы пассивных фильтров высокой частоты приведены на рисунке 9.





Рисунок 9. Схемы пассивных LC фильтров высокой частоты

Применение расчета фильтров через ФНЧ-прототип позволяет рассчитать и полосовые фильтры. Преобразование фильтра низких частот в полосовой фильтр осуществляется заменой емкостей ФНЧ прототипа параллельными контурами, а индуктивностей — последовательными. Пример полосовых фильтров приведен на рисунке 10.



Рисунок 10. Схемы пассивных полосовых LC фильтров

В настоящее время пассивные LC фильтры рассчитываются при помощи специализированных программ, наиболее известные из которых входят в состав программных пакетов MicroCAP и AWR Office. Однако продолжают сохранять актуальность справочники по расчету фильтров такие как Ханзел Г. Е. Справочник по расчету фильтров [2] и Зааль Р. Справочник по расчету фильтров [1].

Следует отметить, что фильтры, рассчитываемые в MicroCAP и у Ханзела имеют одинаковое входное и выходное сопротивления, а фильтры, расчитываемые в AWR Office и у Зааля позволяют одновременно осуществлять трансформацию сопротивлений. Это свойство пассивных LC фильтров очень полезно при разработке высокочастотных усилителей (УВЧ).

Что касается полосовых LC фильтров, то в настоящее время они практически вытеснены кварцевыми или ПАВ-фильтрами, в области относительно низких частот (сотни килогерц) пьезокерамическими фильтрами. Исключение составляют перестраиваемые LC фильтры.

Это связано с достаточно высокой стоимостью изготовления индуктивностей, которые наматываются на ферритовых сердечниках. В случае сетевых фильтров, где широко применяются кольцевые ферритовые сердечники стоимость дополнительно повышается из-за сложности намотки обмотки индуктивности.

Вместе со статьёй “Схемы пассивных фильтров” читают:

Онлайн расчёт LC – фильтров.
Калькуляторы ФНЧ, ФВЧ, резонансных, полосовых LC – фильтров.

LC – фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра – колебательного контура.

Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√ LС .
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р – характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √ L/C .

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо – либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L – длина в метрах, d – диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.
К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности – не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как – потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану – будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора – 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления – 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 << ρ << Rн, где R1 - внутреннее сопротивление генератора, Rн - сопротивление нагрузки, а ρ - характеристическое сопротивление фильтра.
Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

А если надо рассчитать L и C при известных значениях Fср и ρ ? Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.

Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы – катушками.

Широкополосные полосовые LC – фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.

Ссылка на основную публикацию