Графический эквалайзер схема

Многополосный графический эквалайзер.

А почему собственно 10-ти полосный?
Может кому-то надо 6 крутилок, а кому-то и 30-ти мало, тем более, что у нас есть программа для расчёта эквалайзера с любым количеством полосовых фильтров ссылка на страницу.

Схема, которую я приведу, является абсолютно классической, на таком принципе строились эквалайзеры ещё в те стародавние времена, когда фильтры были пассивными.
Однако Hi-End на этой странице мы рассматривать не будем, поэтому катушки мотать нам не доведётся – ограничимся хай-фаем с активными полосовыми фильтрами.


Рис.1

Количество фильтров на приведённой схеме не ограничено ни сверху, ни снизу в пределах разумного, и может быть выбрано индивидуально, в соответствии с личными пристрастиями разработчика.

Подъем или спад усиления в полосе пропускания каждого фильтра определяется сопротивлениями резисторов R4, R5, R6 и составляет от -12дб до +12дб.
Для получения таких пределов перестройки, коэффициент передачи полосовых фильтров (А-К) необходимо выбрать Кпер=2. Делается это соответствующим подбором отношений номиналов резисторов R1 и R3.
Я бы рекомендовал такие значения: R1=30кОм, R3=120кОм .

Схема может запитываться, как от однополярного источника питания – тогда в точку А на схеме нужно подавать напряжение, равное половине напряжения Еп, либо от двухполяного источника – тогда точка А идёт к земле, С1 безжалостно выкусывается, а нижние выводы R5 тоже сажаются на землю.

Регулировка усиления фильтров в пределах -12дб до +12дб является оптимальной для звуковоспроизводящего комплекса, однако при настройке звучания электромузыкальных инструментов, может потребоваться более глубокое подавление нежелательных гармоник. Делается это радикальным уменьшением номиналов резисторов R5 вплоть до 0кОм.

Входное сопротивление приведённого эквалайзера не высоко и составляет R1/N, где N – количество фильтров, поэтому предшествующий каскад должен иметь достаточно низкое выходное сопротивление. Это может быть либо эмиттерный повторитель, либо каскад на ОУ.

Характеристики эквалайзера (коэффициент гармонических и интермодуляционных искажений, уровень шума, неравномерность частотной характеристики) напрямую зависят от параметров применяемых операционных усилителей, поэтому при выборе микросхем надо исходить именно из этих соображений.
В звуковых устройствах, к которым не предъявляется каких-то супер требований, мне нравится, как себя ведёт наша малошумящая микросхемка 1407уд2. При токах потребления 0,1мА она позволяет создавать аппаратуру с приличными характеристиками и батарейным питанием.

Итак, со схемой мы определились, с количеством каналов тоже.
Тогда идём на страницу ссылка на страницу и вводим наши данные.
И вот первая неприятность – нам надо рассчитать 30-ти полосный эквалайзер, а в таблице только 20 фильтров.

Да и не беда.
Вводим 20Гц-20000Гц, количество полос – 30. Нажимаем кнопку “Вычислить” – первые 20 фильтров посчитаны, распечатываем таблицу.
Подставляем полученное значение “F-верхняя 20-го фильтра” в графу “Нижняя частота полосы пропускания Fн (Гц)”, в графу “Количество полос” оставшиеся 10 фильтров, нажимаем кнопку “Вычислить” и распечатываем таблицу с остатками нужной нам информации.

Но тут важно не заблуждаться и понимать, что фильтры 2-го порядка приемлемы в эквалайзерах с полосой пропускания фильтров от 0,8 октав и выше. В полуоктавных, а тем более в третьоктавных графических эквалайзерах обойтись одним повышением добротности фильтров могут себе позволить только малоответственные производители бюджетных поделок. Помимо добротности, нужно повышать и порядок фильтров – до 4-го для полуоктавных, до 6-го для третьоктавных. Делается это посредством последовательного соединения двух, либо трёх фильтров 2-го порядка.

Ладно, табличку распечатали, теперь прямая дорога к расчёту номиналов емкотей и оставшихся неохваченными резисторов наших полосовых фильтров ссылка на страницу.

Схема трех или шести полосного эквалайзера на базе микросхем KA2250

Отличительной чертой этого эквалайзера является отсутствие переменных резисторов, как таковых. Вместо них используется электронный регулятор громкости на микросхеме KA2250 фирмы Samsung.

Микросхема имеет очень низкие искажения и ступенчатую регулировку выходного сигнала (32 ступени по 2дБ) осуществляемую нажатием на кнопки “Down” или “Up”. Помимо этого на ней имеется вход режима “stand-by” и выход контроля регулировки. Для реализации эквалайзера были использованы пассивные темброблоки, для трех полосного рисунок 1, для шести полосного – 2.

Рис. 1. Принципиальная схема трехполосного пассивного реглятора тембра.

Рис. 2. Схема шестиполосного пассивного эквалайзера (регулятора тембра).

Как видно из рисунков эти темброблоки осуществляют только подъем АЧХ, причем начиная от нуля, следовательно при минимальном значении “громкости” всех полос на выходе эквалайзера будет четко прослушиваться полная тишина.

Чтобы избежать этой неприятности весь темброблок зашунтирован резисторами R*, от номинала которого зависит насколько низким будет выходной сигнал при минимальных значениях всех регуляторов.

Для удовлетворения всех запросов эти резисторы запаиваться на плату не будут, а в комплекте будет находится несколько номиналов, резисторов для индивидуального подбора.

Принципиальная схема включения самой микросхемы KA2250 приведена на рисунке 3.

Рис. 3. Принципиальная схема включения микросхемы KA2250 – электронного регулятора громкости.

Таким образом, используя вместо переменных резисторов микросхемы KA2250 мы несколько удорожили стоимость конструкции, однако у этого варианта есть ряд достоинств, не доступных традиционным эквалайзерам, а именно:

  • Со временем у этого эквалайзера не появится характерный для переменных резисторов треск и шелест, возникающий из-за запыленности контактов или выработки резистивного слоя, поскольку регулировка здесь осуществляется кнопками;
  • При подключении специально разработанного для этого эквалайзера индикатора наглядность положения регулировок много выше, чем у обычного эквалайзера;
  • При использовании того же индикатора, при отсутствии нажатия на кнопки регулировки он индицирует уровень каждой частотной составляющей, т.е. работает спектроанализатором;
  • Для работы 2-х эквалайзеров, например в 4-ом канальном усилителе предусмотрен выход синхронизации “Gсинхр”, позволяющий производить регулировку во всех четырех каналах одновременно одной кнопкой, а счетверенных переменных резисторов пока нет;
  • При наличии на передней панели Вашего усилителя кнопок, вместо регуляторов, аппарат значительно выигрывает по дизайну, а в качестве клавиатуры можно использовать бракованный пульт дистанционного управления от импортной аппаратуры. Этот брак можно приобрести у продавцов электроники за очень смешные деньги;

Было бы не справедливо не сказать несколько слов об индикаторе. Это линейка из шести светодиодных индикаторов уровня (по пять светодиодов в каждом + один все время светящийся), сумматор для сигналов с выходов каждого регулятора частотной составляющей и коммутатор входного сигнала, переключающийся при нажатии на любую из кнопок управления.

payaem.ru

Паяем — Все о электронике

Сделать восьмиполосный эквалайзер своими руками

Эквалайзер (регулятор тембра), описание его предоставлено в данной статье, он используется, чтобы повышать качество звука звуковоспроизводящей аппаратуры, в особенности, в обыкновенных жилых помещениях. Данная конструкция мо жет пригодиться как обычным аудиолюбителям, так и тем, кто за нимается использованием аудиоаппаратуры на профессиональном уровне.

Современные качественные усилки и акустические системы дают высокую вер ность звучания в обширных помещениях с хоро шей акустикой. Но акустические свойства жи лых комнат, в частности небольших размеров, зачастую бывают далеко не оптимальны, они не выдают высокую верность звуковоспроизведения даже если имеется трёхполосная импортная акустическая система высокого класса и качестве нный усилок. В любой точке таких помеще ний происходит такое явление, как интерференция звуковых волн (другими словами сложение их с разными фазами), которые выходят непосредственно из акустических систем и отражаются от стен, потолка, пола, мебели. При этом на некоторых частотах появляются стоячие волны (другими словами это пучности и провалы интенсивности звука) с неравномерностью до 20 дБ, поэтому нужно регулировать АЧХ аудиосистемы в опреде лённых полосах частот. Регулировка АЧХ необхо дима, чтобы компенсировать недостатки в наиболее известных двухполосных акустических системах. В этих акустических системах обычно есть про вал АЧХ на средних частотах из — за не совсем качественных электрических разделительных фильтров, их характеристики повысить в качестве очень трудно. Чтобы регулировать АЧХ применяют регуляторы тембра и эквалайзеры. Более простенькие двухпо лосные регуляторы тембра не дают возможности в полной мере справляться с подобными задачами. При подъёме уровня НЧ (20 — 40 Гц) одновре менно усиливаются сигналы в полосе 80 — 200 Гц. Это положение может исправить только эквалайзер (перевод с англ. — «выравниватель»), то есть многополосный регулятор, который устана вливает нужный коэффициент передачи в узкой полосе частот.

Имеются активные и пассивные эквалайзе ры. У каждого типа есть свои преимущества и недо статки. Главный недостаток активных регуляторов тембра, это то что в них используется глубокая частотнозависимая отрицательная обратная связь (ООС), это даёт большие дополнительные ис кажения (интермодуляционные, перекрёстные и т. п.), которые они вносят в регулируемый сигнал. Более часто применяемые для усиления сигналов операционные усилки (ОУ) имеют несколько недостатков:

  • Низкая частота среза не даёт возможность с высокой верностью передавать фронты импульсного сигнала.
  • Так называемые, динамические искажения, которые связаны с переходными процессами в охвачен ных общей ООС цепями.
  • Склонны к самовозбуждению.
  • Повышенные нелинейные искажения.

Как правило, качество звука зависит как от амплитуд гармоник различного порядка, так и от соотношения между ними. Лучше, чтобы с ростом номера гармоники её амплитуда довольно быстро убывала, иначе звук ста новится резким, с «металлическим» оттенком. Во некоторых случаях применение ОУ не всегда приемлемо, а специальные качествен ные ОУ стоят гораздо больше (в десятки раз и больше) и не всегда доступны. По этой причине сейчас в звуковоспроизводя щей аппаратуре зачастую стали применять пассивные регуляторы тембра. Однако у них тоже есть свои недостатки. Первый недостаток — это значи тельное ослабление сигнала. По этой причине усиливать ослабленный сигнал по любому придётся, скорее все го, при помощи тех же ОУ, но уже в широкой поло се частот. Тогда уже будут сказываться шумо вые свойства этих ОУ. Исходя из этого появляется смысл попробовать как нибудь сделать лучше свойства самих актив ных регуляторов тембра. Чтобы уменьшить интермодуляционные и перекрестные искажения, которые вызваны из — за взаимного влияния частотных каналов эквалайзера друг на друга можете попробовать применить уже давно известный способ — это дополни тельное разделение каналов. Предлагается применить два эквалайзера — один для НЧ, а другой для ВЧ. К примеру, можете применить низкочастотный эквалайзер с четырь мя полосами регулирования с граничными часто тами: 70, 200, 500 и 1000 Гц и высокочастотный с четырьмя полосами с граничными частотами: 2, 5, 10 и 16 кГц. Разумеется разделение полос и их ко личество субъективно (это как говорится дело вкуса и слуха). Потом сигналы эквалайзеров надо объединить и подать на вход высококачественного усилка мощности. Здесь попутно можете попытаться «убить» ещё одного «зайца»: то есть не объединять сигналы, а применить два отдельных полосовых усилка, низко частотный со своей акустической системой (без полосовых фильтров) и высокочастотной со своей акустической системой.

В эквалайзерах как правило применяются полосо вые фильтры с различными резонансными частотами, и у них могут быть разные добротности в зави симости от качества радиоэлектронных элементов и разброса их характеристик. По этой причине параллельное включение фильтров с последующим суммированием, используемое в графических эквалайзерах, не даст получить линейную АЧХ в средних положениях регуляторов тембра по причине несогласованности частот среза и добротностей АЧХ фильтров (это же можно отнести и к пассивным ре гуляторам тембра). На практике из — за этого может случится нарушение стереобаланса. Пригод ной для практического применения считается схема включения фильтров в цепь дополнительной ветви ООС операционного звена инвертирующе го усилителя (рисунок 1), которая образована при помощи резисторов R4 и R5. В полосе задерживания полосового фильтра Z1 коэффициент передачи устройства K=–R2/R1 не зависит от соотношения сопротивле ний резисторов R4 и R5. На резонансной частоте F регулятор R4, R5 вместе с фильтром Z1 и ре зистором R1 создают контур ОС, действие которой эквивалентно подключению параллельно ре зистору R1 резистора с сопротивлением R3K(F) при условии R4=0 и подключению параллельно ре зистору R2 резистора с сопротивлением R3K(F)при условии R5=0. Поэтому глубина регулировки тембра в децибелах находится в пределах:

Если R1/R2=R4/R5, то это имеет место на средних положениях регуляторов тембра, фильтр Z1 и резистор R3 оказываются включенными в ди агональ сбалансированного моста, по этой причине АЧХ устройства принципиально линейна. Это же свойство сохраняется и для произвольного числа дополнительных ветвей ОС с фильтрами, которые имеют любые добротности и резонансные частоты.Чтобы на практике реализовать предлагаемый эквалайзера можете применить специальные микросхемы, которые разработаны популярными зарубежными фирмами. Плюс этих изделий заключается в том, что у них низкая стоимость. На иболее доступные микросхемы LA3600 (компании Sony) и BA3822LS (компании Rohm). Микросхемы представляют из себя пятиполосные эквалайзеры, только первый из них одноканальный, а второй — двухканальный. В этих микросхемах применяются полосовые филь тры, которые показаны на рисунке 1. Фильтры сделаны из пары конденсаторов C1 и C2 и переменного рези стора, коорый позволяет менять усиление на часто те настройки приблизительно на ±10 дБ. Центральную частоту настройки можете ме нять при помощи выбора ёмкости конденсаторов C1 и C2. Чтобы расчитать фильтры указанных микросхем можете воспользоваться простой формулой, чтобы определить эту частоту:

где R6 = 1.2 кОм, R7 = 68 кОм — сопротивления внутренних резисторов микросхемы.Напряжение для питания микросхемы BA3822LS от 5 до 14 Вольт. Чтобы минимизировать нелинейные искажения, которые по паспортным данным не должны быть больше 0,1% (при максимальном напряжении питания), желательно подать среднее значение напряжения, к примеру 9.5 Вольт. При мень шем напряжении питания заметно понижается коэффициент усиления. Потребляемый ток довольно незначительный (7 — 8 мА). Входное сопротив ление — 10 кОм.

Электрическая принципиальная схема эквалай зера представлена на рисунке 2, вид его в корпусе показан на фото 1, с открытым корпусом — на фото 2. В этом эквалайзере применяется пара микросхем BA3822LS: одна для НЧ, другая для ВЧ. Схема достаточно простая и дополнительные пояснения не нужны. Чтобы повысить качество работы эква лайзера было решено не применять полярные электролитические конденсаторы. Все конденса торы плёночные, кроме выходных С21, С22, С121 и C122. В этих позициях применялись неполярные электролитические компании Jamicon, на их корпусе особая маркировка — «NP», а белая минусовая полоса отсутствует. Разумеется, если по зволяют габариты устройства, то желательно их поменять на плёночные. Чтобы уменьшить влияния перекрёстных искажений печатная плата не изготавливалась, всё делали навесным монтажом при помощи тонкого провода. Для того чтобы устранить возможные са мовозбуждения конденсаторы C25 и C125 лучше подпаять непосредственно между вывода ми 23 и 24 микросхем. После того как эквалайзер был собран он заработал почти нормально. Пришлось только по добрать ёмкости конденсаторов фильтра на 16 кГц. Качество звучания оказалось довольно хорошим.Это всё. До свидания.

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Статистика

Собираем эквалайзер 10 полос на TL074.

Собираем эквалайзер 10 полос на TL074.

Собираем эквалайзер 10 полос на TL074

На одном из чешских сайтов (язык статьи определил GOOGLE переводчик) был найден проект 10-ти полосного эквалайзера, реализованного на счетверенных операционных усилителях TL074. На пяти микросхемах собраны ячейки фильтров, и одна на входе в качестве предварительного усилителя входного сигнала. Ячейки фильтров все одинаковые, разница только в номиналах емкостей, задающих диапазон регулировки частоты. Полосы частот следующие: 32 Гц , 64 Гц , 125 Гц , 250 Гц , 500 Гц , 1 кГц , 2 кГц , 4 кГц , 8 кГц и 16 кГц. В схеме организован BYPASS, дающий возможность пропустить на выход не фильтрованный сигнал. В качестве переключателя можно применить реле, кнопку или тумблер на 2 группы переключающихся контактов. Если применить переключатель на три группы, то на третью можно прицепить светодиод, загорающийся при включении эквалайзера. Не забудьте расчитать резистор, который будет стоять последовательно со светодиодом. Принципиальная схема эквалайзера на 10 полос показана на изображении ниже:

Далее представлен исходный вид PCB формата печатной платы и рисунок с расположением элементов на ней:

10_band_TL074_pcb

10band_EQ_TL074_components

По этим картинкам была возсоздана печатка в программе Sprint Layout 6. Далее представлен вид LAY6 формата и фото-вид печатной платы:

10 band EQ TL074 LAY6

10 band EQ TL074 LAY6 FOTO

Обращаем внимание, на принципиальной схеме отсутствуют номиналы элементов, но все они показаны на печатной плате, поэтому перерисовывать схему мы не стали, проблем возникнуть не должно. В плате были найдены недочеты, они исправлены, архив и изображения в статье обновлены. На слое K1 (синий) показаны места установки перемычек, которые можно сделать тонким проводом в изоляции.

Блок питания схемы эквалайзера двухполярный (±15 Вольт). Собрать можно самый простой на двух интегральных стабилизаторах 7815 и 7915, например, по такой схеме:

Собрав блок питания убедитесь, что между плечами нет перекоса по напряжению.

Печатка на этот БП выглядит так:

EQ PSU 15-0-15V LAY6

EQ PSU 15-0-15V LAY6 FOTO

LAY6 формат платы блока питания так же вложен в архив с материалами по эквалайзеру. Скачать архив можно по прямой ссылке с нашего сайта. Размер архива – 1 Mb.

По просьбе читателей привожу список элементов схемы эквалайзера (без блока питания):

• 10k / 0,25W – 44 шт.
• 1M / 0,25W – 40 шт.
• 1k / 0,25W – 2 шт.
• 47k / 0,25W – 26 шт.
• 2k2 / 0,25W – 20 шт.
• POT B100k двойной – 10 шт.
• POT B10k двойной – 1 шт.

• 360p – 2 шт.
• 36p – 2 шт.
• 680p – 2 шт.
• 68p – 2 шт.
• 1n5 – 2 шт.
• 150p – 2 шт.
• 2n7 – 2 шт.
• 270p – 2 шт.
• 5n6 – 2 шт.
• 560p – 2 шт.
• 12n – 2 шт.
• 1n2 – 2 шт.
• 22n – 2 шт.
• 2n2 – 2 шт.
• 47n – 2 шт.
• 4n7 – 2 шт.
• 100n – 2 шт.
• 10n – 2 шт.
• 180n – 2 шт.
• 18n – 2 шт.
• 33p – 5 шт.
• 47n – 12 шт.
• 4m7 неполярный – 2 шт.

• S1 – переключатель байпас/эквалайзер на 2 группы переключающихся контактов – 2 шт.
• Разъем 3 Pin 5 mm (вход, выход, питание) – 3 шт.
• Панельки для микросхем 14 Pin – 6 шт.

Плата 10 полосного эквалайзера в сборе:

Плата 10 band EQ в сборе 1

Плата 10 band EQ в сборе 2

Плата 10 band EQ в сборе 3

Плата 10 band EQ в сборе 4

Графический семиполосный эквалайзер-радуга на Arduino Nano и MSGEQ7

Вниманию пользователей электронного портала KAZUS.RU представляется несложный в сборке семиполосный графический эквалайзер. Внешне эквалайзер представляет собой семь столбцов (по количеству полос) из светодиодов разного цвета расположенных в порядке цветов радуги. В каждом столбце 10 светодиодов — 10 уровней сигнала.

Принципиальная схема устройства показана выше. Аудиосигнал с выхода музыкального центра, звуковой карты компьютера либо смартфона поступает на вход специализированной микросхемы MSGEQ7. Данная интегральная схема компании Mixed Signal Integration представляет собой 7-канальный анализатор спектра в корпусе DIP-8 и током потребления 1 мА, являясь к тому же абсолютно доступным по цене. MSGEQ7 способен из входного аудиосигнала выделить частотные полосы 63Гц, 160Гц, 400Гц, 1кГц, 2.5кГц, 6.25кГц и 16кГц:

MSGEQ7 управляется по двум цифровым входам Reset (вывод 7) и Strobe (вывод 4). После стартового импульса Reset, достаточно подать семь стробирующих импульсов на линию Strobe, в результате чего после каждого стробирующего импульса, на выходе Out (вывод 3) будет появлятся напряжение, пропорциональное содержанию одной из семи частотных полос в аудиосигнале.

Выход микросхемы MSGEQ7 подключен ко входу микросхемы светодиодного индикатора уровня LM3915. Данная микросхема имееть десять выходов, состояние которых зависит от уровня входного сигнала. Схемой управляет микроконтроллер ATMEGA328, я решил использовать готовую плату Arduino Nano. В сети много проектов, использующих аж целых семь корпусов LM3915. Я решил использовать динамическую индикацию и одну микросхему LM3915. Микроконтроллер формирует сигнал Reset для MSGEQ7 и после этого выдает семь стробирующих сигналов Strobe. Одновременно, он включает один из транзисторных ключей столбцов нашего индикатора и данный столбец отображает уровень сигнала с LM3915, которая подключена к строкам нашего индикатора.

Я использовал светодиоды семи цветов (красный, оранжевый, желтый, “теплый белый”, зеленый, синий и розово-фиолетовый) для отображения всех семи частотных полос. Так как у светодиодов разных цветов разное напряжение питания, разный ток и разная яркость, для того, чтобы получить одинаковый световой поток при работе нашего экрана, я использовал возможность микросхемы LM3915 задавать выходной ток. При каждом переключении столбца, микроконтроллер в зависимости от номера столбца с помощью PWM (ШИМ) и простого RC-фильтра формирует на выводах 6 и 7 LM3915 напряжение, соответствующее необходимой яркости столбца. Таким образом решена проблема неравномерной яркости разных типов светодиодов. Единственное, что потребовалось для этого — поднять частоту ШИМ Arduino с дефолтных 500Гц до 64кГц (первые две строчки в секции setup скетча).

Насколько мне известно, иногда попадаются не совсем качественные экземпляры MSGEQ7. Характеризуют их шумы на выходе даже при заземленном входе. Т.е. даже при отсутствии сигнала на экране будут видны хаотичные выбросы. По всей видимости мне попалась именно такая микросхема. Поэтому, я дополнительно с выхода Out завожу сигнал на АЦП микроконтроллера (А7). С помощью нескольких строк кода, микроконтроллер анализирует входной сигнал, и подавляет отображение шумов, просто не включая ключ столбца.

Скетч для микроконтроллера показан ниже:

Как было отмечено выше, я использовал плату Arduino Nano — единственное, что мне пришлось “модифицировать”, это выпаять защитный диод по питанию USB и заменить его на перемычку. На нем “просаживалось” напряжение и схема работала нестабильно. Также по питанию стоит электролитический конденсатор емкостью не менее 1000мкф для того, чтобы в моменты, когда на экране горят почти все светодиоды, не просаживалось напряжение на шине USB. Также стоит заметить, что при питании схемы от USB компьютера, лучше использовать USB-хаб с внешним питанием, это минимизирует помехи по шине USB. Для эквалайзера печатной платы не разрабатывалось, вся конструкция собрана на двух макетных платах. На видео ниже вы можете увидеть работу эквалайзера.

Принципиальная схема графического эквалайзера и код для микроконтроллера доступны по этой ссылке.

C этой схемой также часто просматривают:

Эквалайзер
Светодиодный куб 5х5х5 на Arduino
Светодиодный куб 4х4х4 на Arduino
Светодиодный куб 3х3х3 на Arduino
Arduino UNO урок 1 – Мигание светодиодом
LPT программатор PIC микроконтроллеров
LPT программатор PIC микроконтроллеров
Автоматизация смывного бачка
Подключение энкодера к микроконтроллеру PIC

Ссылка на основную публикацию