Индукторный генератор с укороченными полюсами

Принцип работы индукторного генератора

Статором индукторного генератора является его внешняя неподвижная часть, в пазах которой расположены обмотка переменного тока РО и обмотка возбуждения ОВ. Обмотка возбуждения питается постоянным током. Внутреннюю вращающуюся часть генератора называют ротором и ему придается зубчатая форма, аналогичная форме ротора обыкновенной синхронной машины (рис.42.1). Полузакрытые пазы статора имеют шаг, равный половине зубцового деления ротора, то есть на каждое зубцовое деление ротора приходится два зубцовых деления статора.

Если по обмотке возбуждения протекает постоянный ток, то в магнитной цепи генератора возникнет магнитный поток. Независимо от положения ротора большая часть потока будет всегда проходить через зубцы ротора, и только незначительная часть пройдет по пазам.

Если ротор неподвижен, то в магнитной цепи будет существовать постоянный магнитный поток, никакой переменной ЭДС не возникнет.

При вращении ротора положение его зубцов по отношению к зубцам статора будет меняться. На рис.42.2 показаны четыре позиции взаимного расположения зубцовых зон ротора и статора при вращении ротора.

Рис.42.2. Взаимное расположение зубцовых зон ротора и статора

при перемещении ротора (I – IV позиции)

1. Частота ЭДС, наведенной в статорной обмотке генератора, независимо от конфигурации зубцовой зоны, определяется только числом зубцов ротора и его скоростью вращения.

2. Масса однополярных генераторов больше для одной и той же мощности, частоты и скорости вращения ротора.

3. Потокосцепление обмотки статора в большинстве исполнений изменяется только по величине, без изменения знака, хотя могут быть случаи, когда оно изменяется как по величине, так и по знаку, например, у генераторов с пульсирующим потоком.

4. Вследствие наличия массивных участков магнитной цепи переходные процессы в однополярных генераторах протекают медленнее, чем в разноименнополюсных генераторах.

5. Независимо от вида исполнения индукторные генераторы создают большой шум, что требует установки электромашинных преобразователей в отдельные помещения.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8406 – | 7319 – или читать все.

193.151.241.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Конструкция индукторных генераторов

Существует большое количество модификаций генераторов индукторного типа, причем это разнообразие касается не столько конструктивных элементов, сколько конфигурации магнитной цепи и схем обмоток.

В основу классификации индукторных генераторов целесообразно положить характер изменения потока зубца ротора при вращении последнего. Могут быть следующие случаи: а) поток зубца статора по абсолютной величине практически постоянен; б) поток зубца статора периодически изменяется по абсолютной величине с частотой, близкой или равной основной частоте генератора.

Известны два основных типа индукторных генераторов:

1) одноименнополюсные (гомополярные);

2) разноименнополюсные (гетерополярные).

Исторически первыми появились гомополярные машины. На рис.42.3 показана активная часть такого однофазного генератора с простейшей конфигурацией зубцовой зоны. Пакеты статора всегда набираются из листовой электротехнической стали. Ротор в некоторых случаях выполняется также шихтованным, а иногда, особенно при больших окружных скоростях, массивным. Корпус машины и втулка ротора всегда выполняются массивными из ферромагнитного материала.

Рис.42.3. Схематический вид двухпакетного одноименнополюсного генератора: а – продольный разрез; б – поперечный разрез

Ток возбуждения создает магнитный поток, путь которого обозначен на рис.42.3 пунктирной линией. Катушки обмотки статора (якоря) имеют шаг, равный или близкий к зубцовому делению статора или половине зубцового деления ротора.

Кривая распределения магнитного потока в воздушном зазоре изображена на рис.42.4. Таким магнитный поток называют пульсирующим, он содержит постоянную составляющую и переменную. Благодаря переменной составляющей магнитного потока, которая появляется только при вращении ротора, в статорной обмотке наводится переменная ЭДС.

Рис.42.4. Кривая распределения магнитного потока

Наличие двух пакетов, как это показано на рис.42.3, не является характерным для одноименнополюсного генератора. В некоторых случаях при небольших габаритах генератора один из пакетов статора и ротора заменяется массивным магнитопроводом, и последний может быть совмещен с подшипниковым щитом (рис.42.5). В этом случае статор и ротор имеют по одному пакету, конструкция генератора упрощается, и стоимость его снижается.

Соединяя витки обмотки статора в секции и сами секции последовательно или параллельно, можно получить генераторы на различные номинальные напряжения и ток. В гомополярной машине ротор не перемагничивается, поэтому он и не нагревается, что является серьезным преимуществом его перед другими типами генераторов. К недостаткам такой конструкции следует отнести наличие остаточного напряжения даже при токе возбуждения, равном нулю.

Гетерополярные (разноименнополюсные) генераторы отличаются от рассмотренных размещением обмотки возбуждения. Геометрия активной части такого генератора при простейшей конфигурации зубцовой зоны изображена на рис.42.6.

Рис.42.6. Схематический вид разноименнополюсного генератора:

а – продольный; б – поперечный разрезы

В разноименнополюсном генераторе ротор при вращении перемагничивается, и поэтому он всегда выполняется шихтованным. Пакет статора обычно также выполняется шихтованным, хотя спинка статора может быть выполнена и массивной.

В пакете статора наряду с пазами, в которых размещается обмотка переменного тока, имеются пазы обычно большего размера и параллельные валу, в которых размещаются катушки возбуждения.

Ток, проходящий по обмотке возбуждения, создает магнитный поток, направление которого на рис.42.6,б показано пунктиром. Принцип работы такого генератора на участке между двумя большими пазами тот же, что и у одноименнополюсного генератора; таким образом, участок дуги статора, заключенный между двумя большими пазами, соответствует одному пакету одноименнополюсного генератора.

Следовательно, гетерополярные машины имеют не одну, а несколько магнитных цепей (полюсов). Чаще всего их четыре (рис.42.6,б), хотя может быть и больше. Число пазов обмотки возбуждения равно числу полюсов.

Сравнивая однополярные и гетерополярные генераторы, можно отметить следующее:

1. Частота ЭДС, наведенной в статорной обмотке генератора, независимо от конфигурации зубцовой зоны, определяется только числом зубцов ротора и его скоростью вращения.

2. Масса однополярных генераторов больше для одной и той же мощности, частоты и скорости вращения ротора.

3. Потокосцепление обмотки статора в большинстве исполнений изменяется только по величине, без изменения знака, хотя могут быть случаи, когда оно изменяется как по величине, так и по знаку, например, у генераторов с пульсирующим потоком.

4. Вследствие наличия массивных участков магнитной цепи переходные процессы в однополярных генераторах протекают медленнее, чем в разноименнополюсных генераторах.

5. Независимо от вида исполнения индукторные генераторы создают большой шум, что требует установки электромашинных преобразователей в отдельные помещения.

Дата добавления: 2015-05-30 ; просмотров: 1388 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Устройство автомобилей

Генераторы переменного тока

Развитие автомобилестроения сопровождалось ростом требований к безотказности и увеличению срока службы автомобилей, комфорту их эксплуатации, снижению эксплуатационных затрат на техническое обслуживание и ремонт, а также соответствие все возрастающим требованиям безопасности движения.
В связи с этим появилась необходимость существенного увеличения мощности и срока службы автомобильных генераторов, как основных источников электрического тока, улучшения их эксплуатационных характеристик и снижения эксплуатационных затрат. Появилась необходимость уменьшения габаритных размеров и массы генераторов, как, впрочем, и многих других агрегатов и устройств, что позволяло гибко проектировать компоновку и внешний дизайн автомобилей, а также получать экономию дорогостоящих металлов.

Удовлетворение перечисленных требований путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность и малый срок службы щеточно-коллекторного узла, а также габаритные размеры и массу генераторов постоянного тока, стало неосуществимо. Поэтому было выбрано новое направление в развитии автомобильных генераторов – создание генераторов переменного тока.

Название «генератор переменного тока» несколько условно, и касается в основном особенностей конструкции генератора, поскольку они оснащены встроенными полупроводниковыми выпрямителями и питают потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, осуществляющий выпрямление переменного тока, полученного в обмотках якоря.
Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный и надежный выпрямитель на полупроводниковых диодах, в котором отсутствовали механические детали и узлы, подверженные износу и отказам.

Преимущества и недостатки генераторов переменного тока

К основным преимуществам генераторов переменного тока по сравнению с генераторами постоянного тока можно отнести следующие свойства:

  • при одинаковой мощности их масса в 1,8…2,5 раза меньше, причем примерно в три раза меньше расходуется ценного цветного металла – меди;
  • при одинаковых габаритах генераторы переменного тока выдают большую мощность;
  • ток начинает вырабатываться при меньшей частоте вращения ротора;
  • проще схема и конструкция регулирующего устройства вследствие отсутствия элемента ограничения силы тока и реле обратного тока;
  • проще и надежнее конструкция токосъемного устройства, особенно, в бесконтактных генераторах переменного тока;
  • меньше эксплуатационные затраты из-за высокой надежности работы и увеличения срока службы.

С практической точки зрения преимущества генератора переменного тока проявляются в том, что вырабатываемый им ток снимается с неподвижных обмоток, закрепленных на корпусе-статоре. Обмотка возбуждения, выполненная на вращающемся роторе, существенно легче неподвижных обмоток статора, поэтому ротор можно вращать с большей скоростью, не опасаясь явлений дисбаланса вращающихся масс. Да и ток возбуждения в этом случае подвести проще, поскольку он небольшой. В результате щетки и контактные кольца служат дольше.

Кроме того, генератор постоянного тока, в отличие от генератора переменного тока, начинает вырабатывать ток при относительно большой частоте вращение якоря. По этой причине для его полноценного функционирования, например, на холостых оборотах двигателя, необходимо значительное передаточное число привода, что в дальнейшем (на рабочей частоте коленчатого вала) может привести к дисбалансу (из-за значительной массы якоря), износу подшипников и элементов привода генератора.

Определенное преимущество генераторов переменного тока проявляется, также, в том, что при необходимости получения высокого напряжения (например, для питания высоковольтных потребителей), достаточно использовать небольшой трансформатор. Увеличить напряжение постоянного тока таким способом не удастся. Несмотря на то, что в автомобильных бортовых сетях необходимость получения высокого напряжения возникает крайне редко, такую возможность нельзя сбрасывать со счетов.

Основные недостатки генератора переменного тока – необходимость выпрямления вырабатываемого им тока, а также некоторое рассеивание мощности в окружающих ротор и статор металлических деталях из-за возникновения вихревых и реактивных токов в переменном электромагнитном поле. Тем не менее, достоинства генераторов переменного тока с лихвой окупают отмеченные недостатки.

Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры, и их приходилось размещать отдельно от генератора, в местах, где обеспечивалось хорошее охлаждение. Для присоединения такого выпрямителя к генератору требовалась дополнительная проводка.
Кроме того, селеновые выпрямители были недостаточно теплостойки, и допускали максимальную рабочую температуру не выше +80 ˚С.
По этим причинам в дальнейшем от селеновых выпрямителей отказались, и стали применять кремниевые диоды, которые были менее габаритны, обладали хорошей теплостойкостью, что позволяло размещать их непосредственно в генераторе.

На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы.
Габаритные размеры интегральных регуляторов позволяют встраивать их в генератор, который совместно со встроенными регулятором и выпрямительным блоком называется генераторной установкой.

Принципиальное устройство генератора переменного тока

На рис. 1 представлена упрощенная схема генератора переменного тока, который состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего магнитное поле.

Полюсы ротора поочередно проходят мимо неподвижных катушек статора, размещенных на пазах с внутренней стороны корпуса генератора. При этом изменяется направление магнитного потока, а, следовательно, и направление индуцируемой в катушке ЭДС.

Обычно число полюсов магнита на роторе и число катушек в корпусе позволяет получить трехфазный ток. У трехфазных генераторов обмотки имеют одну общую точку, где соединяются их концы, поэтому такая схема соединения называется «звездой», а общая точка обмотки – нулевой точкой.

Вторые концы обмоток присоединяют к двухполупериодному выпрямителю. Магнитное поле ротора может создаваться постоянным магнитом или электромагнитом. В последнем случае к обмотке возбуждения электромагнита подводится постоянное напряжение.

Применение в роторе электромагнитов усложняет конструкцию генератора, так как необходимо подводить напряжение к вращающейся детали – ротору, но в этом случае возможно регулирование напряжения изменением частоты вращения ротора. Кроме того, магнитные свойства постоянных магнитов существенно зависят от их температуры.

Более подробно устройство и работа автомобильного генератора переменного тока приведены на следующей странице.

Бесконтактные генераторы с электромагнитным возбуждением

Для автомобильных генераторов надежность и срок службы определяются тремя факторами:

  • качеством электрической изоляции;
  • качеством подшипниковых узлов;
  • надежностью токосъемных (щеточно-контактных) устройств.

Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен путем использования бесконтактных генераторов, имеющих более высокую надежность и ресурс, чем контактные генераторы, использующие щеточно-контактные токосъемные устройства. Это стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением – индукторных генераторов и генераторов с укороченными полюсами.

К бесконтактным генераторам с электромагнитным возбуждением относятся индукторные генераторы и генераторы с укороченными клювами. Работает генератор следующим образом. Обмотка возбуждения, по которой протекает постоянный ток, создает в магнитной системе поток, который при вращении ротора изменяется по величине без изменения знака. Этот поток замыкается, проходя через воздушные зазоры между валом и элементами ротора, зубцы которого выполнены в виде звездочки, воздушный зазор между ротором и статором, магнитопровод статора и крышку генератора.

Изменение магнитного потока в якоре при вращении ротора происходит за счет изменения магнитного сопротивления воздушного зазора между зубцами статора и ротора.
Магнитный поток Ф у индукторных генераторов пульсирующий. Магнитный поток в воздушном зазоре периодически изменяется от Фmах, когда оси зубцов ротора и статора совпадают, до Фmin, когда оси зубцов ротора и статора смещены на угол 180˚ электрических градусов. Таким образом, магнитный поток имеет среднюю постоянную и переменную составляющую с амплитудой

3убец и впадина ротора (индуктора) генератора образуют пару полюсов, поэтому частота тока якоря в индукторе генератора может быть определена по формуле:

где z – число зубцов ротора.

В генераторах с укороченными полюсами бесконтактность достигается за счет неподвижного крепления обмотки возбуждения с помощью немагнитной обоймы. Полюсы клювообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора, индуцируя в них ЭДС.

Генераторы с укороченными полюсами просты по конструкции, технологичны. Роторы таких генераторов имеют малое рассеяние.
К недостаткам можно отнести несколько большую, чем у контактных генераторов, массу при той же мощности. Также следует отметить трудность крепления обмотки возбуждения и обеспечения жесткости и механической прочности ее крепления.

Применение на автомобилях существующих конструкций индукторных генераторов долго сдерживалось следующими трудностями:

  • невысокие удельные показатели;
  • повышенный уровень пульсации выпрямленного напряжения;
  • повышенный уровень шума.

Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволило использовать индукторные генераторы переменного тока на автомобилях.

Впервые бесщеточные генераторы с укороченными полюсами 45.3701 и 49.3701 были использованы на автомобилях марки «УАЗ».

Небольшой видеоролик позволит наглядно понять основные принципы работы и устройство автомобильного генератора переменного тока.

Индукторный генератор с укороченными полюсами

синхронный генератор / Статьи – Индукторные и бесщеточные синхронные машины

В промышленности и на АЭС находят применение синхронные машины особой конструкции. Одной из таких машин является индукторный генератор, который служит источником электроэнергии переменного тока высокой частоты (400– 30000 Гц) и может использоваться в системах возбуждения крупных турбогенераторов, в установках индукционного нагрева и т.п.
Принцип действия индукторных генераторов основан на использовании зубцовых пульсаций магнитного потока. При этом магнитный поток возбуждения, индуктирующий переменную ЭДС, не изменяет своего направления, а меняется по величине от Фmin до Фmax.и неподвижен в пространстве.
В первом приближении различают два типа индукторных генератора – одноименнополюсные и разноименнополюсные. В том и другом случае ротор генератора представляет собой зубчатый цилиндр либо набранный из листов электротехнической стали, либо массивный. Статор как обычно набирается из листов электротехнической стали и в его пазах размещают витки обмотки переменного тока. Шаг витков обычно равен единице, т.е. на каждом зубце статора расположена определенная катушка обмотки переменного тока, в которой и наводится ЭДС.
В одноименнополюсных генераторах предусмотрено по два пакета стали на статоре и на роторе, соединенных между собой сердечниками как показано на рисунке 1. Обмотка возбуждения в этом случае представляет собой сосредоточенную кольцевую катушку, которую размещают на статоре между пакетами стали. Она должна быть подключена к источнику постоянного тока. Она создает магнитный поток, который замыкается по всему магнитопроводу создавая в пакетах ротора (и статора) полюсы всегда одной полярности.

Чтобы в обмотке возбуждения не индуцировалось ЭДС высокой частоты, необходимо обеспечить постоянство магнитного потока и соответственно магнитного сопротивления по всей длине магнитных силовых линий. Это достигается тем, что один пакет ротора смещен относительно другого пакета ротора на половину зубцового деления.

В разноименнополюсных индукторных генераторах имеется по одному пакету на статоре и роторе. При этом обмотка возбуждения – это сосредоточенная обмотка, уложенная в большие пазы статора, а обмотка переменного тока – устроена также, как в одноименнополюсных генераторах, и укладывается в малые пазы статора.
Зубцовые шаги статора и ротора выбираются так, чтобы суммарное магнитное сопротивление на пару полюсов возбуждения и соответственно суммарный магнитный поток машины, сцепленный с обмоткой возбуждения, не изменялись бы по мере вращения ротора. Это обеспечивает отсутствие ЭДС высокой частоты в обмотке возбуждения.

В то же время по мере вращения ротора его зубцы меняют свою полярность при переходе от одной катушки возбуждения к другой. Изменение направления ЭДС обмотки переменного тока и ее синусоидальность обеспечиваются также как в одноименнополюсных машинах – т.е. пульсацией магнитного потока по отношению к каждой катушке обмотки переменного тока и формой зубцов ротора. Применяется также и скос пазов.

Индукторная синхронная машина как и все электрические машины обладает свойством обратимости, т.е. может работать в режимах генератора и электродвигателя. При этом можно получит очень малые значения частоты вращения в соответствии с формулой:

Обмотка возбуждения индукторного синхронного генератора может состоять из нескольких самостоятельных обмоток, которые получают питание из разных источников. Это необходимо для улучшения характеристик генератора.
Например, в индукторном генераторе ВГТ– 4500/500 применяемом в качестве возбудителя турбогенератора ТВВ– 320 – 2, основной ток возбуждения составляет 3000 А., а вспомогательные обмотки возбуждения имеют токи 160 А и 800 А. Естественно, что для выпрямления тока обмотки переменного тока индукторного генератора необходимо иметь полупроводниковые (кремниевые) выпрямители.
Индукторные машины не требуют применения щеточного контакта, т.е. являются бесщеточными.

Этот тип машин по принципу действия не отличается от обычных С.Г. но у них на роторе нет обмотки возбуждения. Вместо нее устанавливают постоянные магниты. Это упрощает конструкцию и обслуживание машины, повышает ее надежность. Однако они имеют относительно большую массу, практически не обеспечивают регулирование и стабилизацию напряжения на выходе.
Применяются такие генераторы в установках маломощных передвижных электростанций, в автомобилях, в качестве тахогенераторов, а также в качестве подвозбудителей с системах возбуждения мощных турбогенераторов. В частности, для возбудителя индукторного типа ВГТ–4500 – 500 применяется подвозбудитель ГПСМ – 30/400 с постоянными магнитами на роторе. Мощность подвозбудителя 37,5 кВ.А. Частота вращения 3000 об/мин, напряжение 220 – 230 В, частота 400 Гц. Переменный ток через выпрямители подается в вспомогательную обмотку возбуждения индукторного возбудителя или С.Г. с самовозбуждением.
В отличие от обычных синхронных генераторов воздушный зазор в С.Г. с постоянными магнитами выбирают минимальным. Это определяется свойствами магнитотвердого материала ротора. Одним из способов уменьшения воздействия поля реакции якоря на поле постоянного магнита является применение полюсных наконечников из магнитомягкой стали.

Бесщеточные синхронные генераторы

Рассмотренные выше индукторные генераторы также относятся к бесщеточным машинам, однако их применение в качестве возбудителей мощных синхронных генераторов требует применения контактных колец и щеток у последних. Применение щеточного аппарата у С.Г. с мощностями 500, 800, 1000, 1200 МВт уже практически невозможно по условиям габаритов, охлаждения, очистки от пыли и др.
По этим причинам в качестве возбудителей мощных турбогенераторов стали применять бесщеточные системы возбуждения, состоящие из обращенного синхронного генератора переменного тока, вращающихся кремниевых выпрямителей и подвозбудителей, в качестве которых могут применяться С.Г. с постоянными магнитами или индукторные генераторы.
Структурная схема бесщеточной системы возбуждения показана на рисунке, где обозначены:
ПВ – подвозбудитель;
В – возбудитель, Выпр. – вращающиеся выпрямители;
СГ – синхронный генератор;
АРВ – система регулирования возбуждения;
ОВ – обмотка возбуждения перевозбцудителя (индукторного типа);
ВОВ; ООВ – вспомогательная и основная обмотки возбуждения возбудителя.

Основной возбудитель системы бесщеточного возбуждения ТГ представляет собой обращенный синхронный генератор переменного тока повышенной частоты, у которого обмотки возбуждения расположены на статоре и, следовательно неподвижны. Обмотка переменного тока (обмотка якоря) расположена на роторе и подключена к вращающимся выпрямителям. Выпрямленный ток поступает в обмотку возбуждения синхронного турбогенератора непосредственно.
Различают трехфазные и многофазные возбудители. У трехфазных возбудителей обмотка переменного тока собрана в звезду и подает питание на мостовую схему выпрямительного устройства. При этом каждая фаза имеет по нескольку параллельных ветвей, каждая из которых подключена к отдельной ветви мостовой схемы выпрямителя (всего 6 ветвей в фазе).
В многофазных возбудителях используют не три, а много фаз обмотки переменного тока. Например, шестнадцать фаз, которые включены на самостоятельные ветви мостовой схемы выпрямителя. Это решение позволяет увеличить быстродействие системы возбуждения С.Г. в переходных режимах.
Еще большее быстродействие обеспечивает тиристорное выпрямление переменного тока возбудителя, но при этом возникает потребность подачи импульсов управления на вращающиеся тиристоры, например, с помощью скользящего контакта щеток с кольцами на валу генератора.

Автомобильные вентильные генераторы

Действие автомобильных генераторов основано на явлении электромагнитной индукции. Это явление состоит в том, что если изменять магнитный поток, пронизывающий катушку, то на ее выводах появится напряжение, равное произведению числа ее витков на скорость изменения магнитного потока (рис. 1.4).

Рис. 1.4. Генератор переменного тока с ротором, представляющим собой постоянный магнит: а – упрощенная конструкция генератора; б – временные диаграммы фазных напряжений

Вентильные автомобильные генераторы делятся на щеточные и бесщеточные.

Трехфазный щеточный генератор (рис. 1.5) состоит из статора 1, на зубцах которого находится обмотка 2, и вращающегося ротора с полюсами 3, на которых находится обмотка возбуждения 5. Электрический ток к обмотке возбуждения подводится через вращающиеся кольца и неподвижные щетки 4. Обмотка статора состоит из трех фазных обмоток. При вращении ротора напротив фазных обмоток оказывается то северный, то южный полюс ротора (рис. 1.6). В результате этого в обмотках вырабатываются переменные напряжения, равные по амплитуде и частоте, но сдвинутые друг относительно друга на 120 0 . Амплитуда напряжения тем больше, чем больше частота вращения ротора и чем больше сила тока в обмотке возбуждения. В реальных генераторах число зубцов статора достигает 36. Ротор реального автомобильного щеточного генератора (генератора с клювообразным ротором) состоит из двух полюсных половин. Каждая половина имеет выступы-клювы, охватывающие собой обмотку возбуждения. Клювообразные полюсы позволяют с помощью одной катушки образовывать многополюсную систему.

Рис. 1.5. Вентильный щеточный генератор (упрощенная конструкция): 1—статор; 2—обмотка статора; 3—полюс ротора; 4—контактные кольца; 5—обмотка возбуждения

Недостатком генераторов, имеющих описанную конструкцию, является наличие трущихся электрических контактов. Этот недостаток устранен в бесщеточных генераторах индукторного типа и генераторах с укороченными полюсами.

В индукторных генераторах (рис. 1.6) обмотка возбуждения жестко закреплена на стальной передней крышке. Ротор генератора представляет собой многолучевую звездочку 2, надетую на вал. Статор по конструкции не отличается от статора щеточного генератора. При вращении ротора напротив обмоток статора попеременно оказывается то зубец, то впадина ротора. Поэтому магнитный поток, проходящий через них, то увеличивается, то уменьшается. В катушках появляется переменное напряжение.

Рис. 1.6. Вентильный индукторный генератор: 1 – индуктор; 2 – ротор (многолучевая стальная звездочка); 3 – задняя крышка; 4 – магнитопровод; 5 – обмотка статора; 6 – передняя крышка-магнитопровод; 7 – обмотка возбуждения

Существующие конструкции индукторных генераторов пока обладают рядом недостатков, которые сдерживают их использование в автомобилях. К ним относятся невысокие удельные показатели, повышенный уровень пульсации выпрямленного напряжения, повышенный магнитный шум.

Другой тип бесщеточных генераторов – генераторы с укороченными полюсами (рис. 1.7). В этих генераторах клювы ротора укорочены настолько, что полученной щели хватает для размещения проводов питания обмотки возбуждения и деталей для закрепления обмотки возбуждения между полюсными половинами.

Рис. 1.7. Вентильный генератор с укороченными полюсами: 1 – крепление обмотки возбуждения; 2 – обмотка возбуждения; 3 – втулка; 4 – укороченные полюсные половины; 5 – обмотка статора; 6 – статор

Переменный ток, наводимый в обмотках статора, выпрямляется полупроводниковым выпрямителем, собранным из диодов по мостовой схеме (рис. 1.8). Диоды VD1. VD3, VD7. VD9 образуют силовой выпрямитель. Катоды диодов VD7. VD9 соединены с выводом “+” генератора, а аноды диодов VD1. VD3 – с выводом “–“. Диоды VD1. VD6 образуют дополнительный выпрямитель для обмотки возбуждения, подключенной к нему через вывод “Д”. Этот выпрямитель предотвращает разряд аккумуляторной батареи на обмотку возбуждения генератора при неработающем двигателе автомобиля.

В моделях современных генераторов силовой выпрямитель содержит дополнительное плечо из диодов VD10. VD11, соединенное с нулевой точкой 0 генератора. Дополнительное плечо используется, если фазное напряжение генератора по форме отличается от синусоиды. В этом случае в нем имеются различные гармоники, в частности третья гармоника и гармоники, кратные трем. В линейном напряжении этих гармоник нет, так как они взаимно компенсируют друг друга. Введение дополнительного плеча позволяет подавать в нагрузку вместо линейного напряжения фазное. Так как все гармоники при этом попадают в нагрузку, мощность генератора без изменения его габаритов увеличивается до 15%.

Рис. 1.8. Генераторная установка с выпрямителем, имеющим дополнительное плечо

Ссылка на основную публикацию