Онлайн расчет порта фазоинвертора

Расчет фазоинверторного корпуса

Перед тем как производить расчет корпуса сабвуфера с фазоинвертором, необходимо узнать электроакустические характеристики нашего конкретного динамика — так называемые параметры Тиля-Смолла. Также нам потребуется понять значение следующих терминов:
1. Чистый объем – внутренний размер корпуса. При его определении не учитываются объемы порта фазоинвертора и динамика.
2. Настройка порта – его конфигурация по отношению к чистому объему корпуса. Усиление настройки на определенную частоту приводит к формированию требуемой амплитудно-частотной характеристики.
Чтобы провести расчет фазоинвертора для сабвуфера, необходимо знать следующие параметры Тиля-Смолла:
1. Резонансную частоту динамика (Fs), измеряется в герцах (Hz).
2. Эквивалентный объем (Vas), измеряется в литрах.
3. Полную добротность динамика (Qts).
Как правило, все эти данные можно найти в описании или инструкции к динамику, а также на сайте его производителя.

Рассчитываем чистый объем и частоту настройки фазоинвертора

Для выполнения этих действий нам потребуется программное обеспечение, рассчитывающее сабвуферные корпуса, которое можно легко найти в интернете. Одной из самых популярных и простых в обращении считается программа JBLSpeakerShop. В ней нам потребуется указать параметры Тиля-Смолла, подобрать объем ящика с настройкой порта и получить нужный график амплитудно-частотных характеристик.

Рассчитываем порт фазоинвертора

Для этого мы воспользуемся помощью программы BassPort, которая проводит быстрый, удобный, а главное — очень точный расчет фазоинвертора онлайн.

Нам нужно будет ввести следующие значения:
1. Требуемую частоту настройки порта.
2. Чистый объем (полученный ранее).
3. Площадь диффузора динамика (замеряем длину по центральной оси динамика от середины подвеса до такой же точки напротив).
4. Ход диффузора (максимальный) в одну из сторон (указан в описании как Xmax).
5. Теперь нам нужно выбрать сечение порта.
6. Ввести его габариты.
7. Далее – жмем кнопку «Рассчитать» — получаем длину порта (L), а также его литраж.

Определяем общий объем корпуса

Выполняя расчет фазоинвертора программой JBLSpeakerShop, мы определили требуемый чистый объем для нашего конкретного сабвуфера и частоту, на которую нужно настраивать порт. BassPort «подсказал» нам длину порта, а также объем, который он будет занимать. Теперь проводим следующие арифметические действия: складываем объемы – порта, чистый и вытесняемый динамиком. Полученное значение и будет являться общим внутренним литражом нашего будущего корпуса.
Следует отметить, что если в корпусе будут использованы округления, ребра жесткости, или он будет щелевой, то нам придется учесть все эти нюансы. Примерный расчет щелевого фазоинвертора:
1. Чистый объем равен 45 литрам.
2. Щелевой порт – площадь 140 см3, 36 Hz – 8,5 л. Добавим 3,8 л на стенки порта (из фанеры 18 мм).
3. Вытесняемый динамиком – 3 л.
4. Складываем эти значения и получаем 60,3 л – общий литраж корпуса.

Получаем размеры корпуса по известному литражу

Итак, подходим к финальному этапу мероприятий. Теперь нам нужно рассчитать, какие же геометрические размеры будет иметь фазоинверторный корпус, если известен его общий литраж – 60,3 л. Проводим замеры багажника, определяя приемлемые габариты. К примеру, нам подходит конструкция длиной в 60 см и высотой в 40 см. Остается узнать ширину.
Определимся, что стенки ящика мы будем выполнять из фанеры толщиной 1,8 см. Теперь нам нужно отнять от длины и высоты конструкции толщину стенок (1,8х2) и получить такие значения: длина – 56,4; высота – 36,4 см. Далее проводим такие вычисления: 60,3х1000:36,4:56,4=29,4. Это и будет ширина корпуса, правда, без учета толщины стенок. Прибавим ее и получим 33 см.
Так выглядит примерный расчет корпуса сабвуфера с фазоинвертором под определенный динамик. Отметим, что эта статья является лишь общим руководством, в ней не учтены многие тонкости и нюансы, которые возникают в процессе работы.

Сайт установщиков

Конструкция корпусов с фазоинвертором требует наличия одного или нескольких рассчитанных отверстий. Отверстия должны настраивать корпус на частоту Fb. Данная программа включает в себя расчет размеров отверстия, что облегчает эту задачу.

Обычно используются два типа отверстий: порты и воздуховоды. Порт представляет собой отверстие, прорезанное в стенке корпуса (обычно в передней стенке). Отверстие может быть круглым, квадратным и прямоугольным. Воздуховод обычно представляет собой трубу, которая закреплена на стенке корпуса (обычно в передней стенке). Воздуховод обычно устанавливается заподлицо с внешней поверхностью корпуса.

И порты и воздуховоды должны быть достаточно большими, чтобы избежать наложения нежелательного звучания, например свиста, создаваемого турбулентностью воздуха, перемещающегося внутрь и наружу корпуса через порт. Размером, который оказывает самое большое влияние на появление таких помех, является площадь поперечного сечения. Нелинейность отверстия, понижающая выходную мощность при высоком уровне мощности, также определяется слишком маленьким поперечным сечением. Одним из способов увеличения площади поперечного сечения является использование нескольких портов и воздуховодов. Практичность такого метода зависит от используемой вами конструкции. Чем больше площадь поперечного сечения, тем длиннее должны быть порты или воздуховоды. Эта длина часто ограничивает размеры порта или воздуховода, которые могут быть использованы в конкретном корпусе. Это может быть одной из многих задач при выборе конструкции корпуса с фазоинвертором при выборе объема корпуса Vb и частоты настройки Fb, необходимых для определения размеров отверстия, подходящего для данного корпуса.

Слишком большая длина воздуховода может создать резонанс органной трубы при очень высокой выходной мощности. Не используйте воздуховоды слишком большой длины. Одним из способов понижения требуемой длины воздуховода является увеличение объема корпуса (или объема соответствующей камеры). Помните, что резонансная частота корпуса (или камеры) является производной от их объема и размеров воздуховода. Если резонансная частота корпуса поддерживается постоянной, то чем меньше объем корпуса, тем длиннее должен быть воздуховод, и наоборот.

Расчет воздуховода оптимизирован для воздуховодов в виде труб. Алгоритм окончания расчета подразумевает, что воздуховод будет закреплен на одном конце заподлицо, а другой конец будет находиться достаточно далеко от внутренних стенок, чтобы была возможность избежать препятствования циркуляции воздуха. Основным правилом является поддержание конца воздуховода на расстоянии по крайней мере одного диаметра от любой боковой стенки или других внутренних структур. Нижеследующая таблица содержит некоторые справочные значения для корпусов с одним воздуховодом.

Минимальный диаметр/площадь воздуховода в таблице представлены для громкоговорителей, которые перемещаются на расстояние, близкое к Xmax. При вычислении размеров воздуховода получается минимальный рекомендованный размер для работы без искажений при максимальном перемещении. Примечание: Минимальный рекомендованный диаметр воздуховода для отверстия для верхней частоты в конструкции корпуса, предназначенного для воспроизведения определенной полосы частот, может быть больше, чем указано в таблице, потому что перемещение воздуха через отверстие имеет большую скорость на более высоких частотах.
Для вычисления размеров воздуховода выберите Vent в меню Box или нажмите Ctrl + V. Откроется окно Vent Dimensions.

Имейте в виду, что оно имеет секции для всех трех конструкции корпусов с фазоинвертором. Если какая-либо конструкция не используется, данная секция не появляется. Также обратите внимание на текстовую инструкцию. Ее можно прочитать, используя линейку прокрутки.

Окно Vent Dimensions разработано для вычисления одного из двух размеров отверстия, Dv или Lv. Сначала введите количество портов, выберите, будет ли Dv представлять собой диаметр или площадь отверстия, затем введите Dv или Lv и неизвестный параметр будет автоматически рассчитан. Каждый из параметров описывается ниже.

Vent Parameters

Number: Количество портов, которое вы хотите использовать. Все порты должны быть одинакового размера.

Diameter/Area: Размер первого отверстия, Dv, может быть введен либо в виде диаметра (для круглого порта или воздуховода), либо в виде поперечного сечения отверстия. При вводе данного значения в виде площади вы сможете рассчитывать квадратные и прямоугольные порты.

Minimum Size: Нажатие данной кнопки приведет к тому, что программа порекомендует вам минимальные диаметр или площадь воздуховода, которые позволят избежать шумов в отверстии при максимальном отклонении громкоговорителя. Программа также рассчитывает приблизительную длину воздуховода. Эти рекомендации могут показаться слишком большими, потому что приводятся в расчете на максимальное отклонение громкоговорителя. Если вы не будете подавать на громкоговоритель сигнал такого высокого уровня, вы можете использовать более умеренные рекомендации, которые приведены в таблице на предыдущей странице.

Dv: Dv может представлять собой либо диаметр отверстия (если оно круглое), либо поперечное сечение, в зависимости от того, какая из кнопок Diameter или Area нажата. После того, как введено значение Dv и вы переместили курсор, будет автоматически рассчитано значение Lv. Значение Dv может быть введено в дюймах (квадратных дюймах, если нажата кнопка Area) или сантиметрах (или квадратных сантиметрах, если нажата кнопка Area). Для изменения единиц измерения для Dv дважды щелкните на ярлыке единиц измерения.

Важно: Алгоритм расчета отверстия оптимизирован для расчета воздуховодов, имеющих круглое сечение. Также он хорошо работает при расчете воздуховодов, имеющих квадратное сечение. При другой форме сечения, например, прямоугольнике, когда высота и ширина отверстия не одинаковы, расчет будет не совсем точен. Узкие щели рассчитывать не рекомендуется.

Если значение Dv введено в виде площади сечения, значение появится в соответствующей колонке электронной таблицы параметров корпуса с индикацией “а”, показывающий отличие площади от диаметра. Если корпус имеет несколько воздуховодов или портов, перед значением Dv будет указано количество портов и знак х. Например, два воздуховода диаметром по 4 дюйма обозначаются 2 х 4,00. Два порта с поперечным сечением в 16 дюймов обозначаются как 2 х 16,00а.

Lv: Длина воздуховода. После ввода значения Lv и перемещения курсора в другую позицию, значение Dv будет рассчитано автоматически. Значение Lv может вводиться в дюймах или сантиметрах. Для изменения единиц измерения Lv дважды щелкните на ярлыке единиц измерения.

Онлайн расчет порта фазоинвертора

Автор: Sobich Aleksej

В этой статье я хочу рассказать и показать о том как можно рассчитать сабвуфер и на что надо обратить внимание, при проектировании в следующих программах: WinISD 0.44, WinISD 0.50а7.
Расчёт ящика будет производится для десяти-дюймового динамика Audiobahn 1051T.
Начнём! Запускаем программу WinISD 0.50a7

1. Создаём новый проект (New Project).
2. Нажав эту кнопку выбираем динамик из базы программы.
3. Просмотр Т/С параметров.

4. Т/С параметры. Нажимаем дальше(Next)

5. Выбор количества динамиков.
6. Тип установки.

Нормальный – все динамики стоят на одной панели.

Изобарический динамики стоят лицом к лицу.

7. Эффективность динамика. Показывает к какому типу корпуса больше подходит.
8. Выбор типа ящика.

Закрытый ящик – название говорит само за себя

Фазоинверторный – ящик оснащенный трубой(фазоинвертором).

Банд пасс 4-го порядка – динамик находится между двух камер одна из них имеет фазоинвертор.

Банд пасс 6-го порядка – находится между двух камер обе оснащены фазоинверторами.

Пассивный излучатель – в одном закрытом ящике динамик и пассивный излучатель(динамик без магнита)

Выбираем какой тип нам подходит и нажимаем дальше (Next)

Далее программа предлагает способ оформления АЧХ различными способами. Я не заостряю внимания на этом пункте и нажимаю далее.
Если же выбрать Пассивный излучатель то программа предложить ввести следующие Т/С параметры пассивного излучателя:

  1. Vas – это возбуждаемый закрытый объем воздуха динамиком.
  2. Fs – резонансная частота.
  3. Xmax – максимальный ход диффузора.
  4. QMS – Механическая добротность.
  5. SD – площадь диффузора.

Далее будем рассматривать программу на примере Банд пасс 4ого порядка.

9-10. Опять можно указать количество и тип установка динамиков.
11. Дополнительные возможности.
Вкладка Box.

12-13. Камеры ящика
14. Объем камеры.
15. Частота настройки камеры.

16. Количество Фазоинвертора(ов)
17. Диаметр Фазоинвертора(ов)
18. Длинна Фазоинвертора(ов)
19. Тип круглый или прямоугольный. можно менять нав на кружок.
20. Вид фазоинвертора.

Переходим к основному расчёт ящика:

21. Нажимаем на схематично показанном ящике правой кнопкой мыши удерживая передвигаем курсор по оси (X) тесть по горизонтали меняем объём по оси(Y) по вертикали чтобы изменить частоту. Аналогично Левой кнопкой мыши чтобы изменить параметры нижней камеры. Макушка кривой должна находиться выше красной линии между 35Гц и 120Гц если это сабвуфер как можно шире и ровнее.

Transfer function magnitude. АЧХ

Примерно так, но нижний предел 40Гц, а верхний 113Гц, это тоже подходит.
Там где я пометил красными чёрточками на практике там будет срезаться частота кроссовером.

Выбираем график: Maximum Power.

Maximum Power

На этом графике программа показывает максимальную мощность относительно частоты. Видно, что имеется спад мощности пик спада 60 ватт на 39 герцах на практике диффузору динамика не хватает хода(Xmax) и появляются неприятные звуки – искажения. На готовом изделии это надо тоже учесть и ограничить мощность

Выбираем график Maximum SPL

Maximum SPL. Этот график показывает максимальное звуковое давление

Также видно спад. По той же причине. Последние два графика от другого динамика, я показал их чтобы наглядней было.
Вот графики для нашего подопытного. Первый немного неправдоподобный на частоте от 0 Гц и до 25 Гц у всех динамиков есть спад.

Теперь надо определиться с размерами ящика в который будет установлен динамик.
Для этого запускаем программу WinISD 0.44 нажимаем новый проект.

Нам надо ввести параметры нашего динамика в эту программу т.к. в её базе его нет для этого нажимаем «New»
Перейдём к WinISD 0.50a7

22. Нажав эту кнопку можно увидеть Т/С параметры которые надо ввести в WinISD 0.44.

Вводим параметры нажимаем ОК и закрываем это окно чтобы не мешалось.
Создаём новый проект.

23. Переставляем галочку чтобы выбрать динамик.
Нажимаем дальше, и делаем точно также как и в WinISD 0.50a7

Переносим параметры ящика из WinISD 0.50a7 в WinISD 0.44.

24. Нажимаем чтобы начать рассчитывать размера ящика.
25. Нажимаем и программа выдаёт оптимальный на её взгляд размеры.
В распоряжении мы имеем 10 дюймовый динамик полный его внешний диаметр 300 мм чтобы уместить его в ящик размеры W и D недолжны быть меньше 300 мм
26. Ширина вписываем 300мм равняется 0,300 МЕТРА
30. Можно поменять единицы измерения просто нажав на размерность в данном случае буква «m»
28. Длина вписываем 0,300 метра
27. Нажимаем на «H» программа показывает высоту.
31. Обратить внимание на L1 и L2 это высота камер смотреть надо чтобы глубина врезки динамика не превышала значение L2.
Но надо учесть толщину материала он будет внахлест ещё в нутрии есть полка в которой стоит динамик и её толщину тоже учесть сам динамик он ведь тоже занимает бьём его я уже учёл если ящик большой там внутри должны стоять распорки их надо тоже учитывать . Получается 7 деталей чтобы рассчитать правильно детали надо учитывать что какие-то из них будут нахлестываться т.к программа показывает внутренние диаметры. Буквой «P» я буду укалывать толщину материала которую надо прибавлять к другим значениям.
1)D x W
2)D x W
3)D x W
4)H+(P*3) x D
5) H+(P*3) x D
6) H+(P*3) x W+(P*2)
7) H+(P*3) x W+(P*2)
Получаем размеры деталей если толщина материала 20мм:
1) 300х300
2) 300х300
3) 300х300
4) 420х300
5) 420х300
6) 420х 340
7) 420х 340

Теперь можно переходить к расчёту фазоинвертора.

32. Тип фазоинвертора мы будем использовать прямоугольный
33. Длинна. Когда конец фазоинвертора смещён со стенкой ящика
то он виртуально удлиняется, и фактически получается что он настроен не на ту частоту и большей длинны WinISD 0,44 этого не учитывает виртуальное удлинение можно рассчитать самому по формуле но проще заглянуть в программу WinISD 0.55a7
повторяю: это действительно только когда конец фазоинвертора смещён со стенкой ящика а когда он выступает это не действует. Итак программа WinISD 0,44 показывает 28,86см а WinISD 0,55а7 25,64см.Ф фазоинвертор будет установлен в деталь № 4 420х300 от 420 отнимаем 20 это высота фазоинвертора получаем ровно 400 т.к фазоинвертор прямоугольный добавляется ещё одна деталь 8)300х255
Вот конечные размера деталей
И их количество .
1) 300х300
2) 300х300
3) 300х300
4) 400х300
5) 420х300
6) 420х340
7) 420х340
8) 300х255

34. Сопротивление воздуха. Сопротивление воздуха в фазоинверторе надо делать как можно меньше увеличивая площадь отверстия фазоинвертора.

Большое спасибо “Sobich Aleksej” за статью

Добавил: Павел (Admin)
Автор: Sobich Aleksej

Технические параметры и эксплуатация фазоинвертора

Построить полноценную акустическую систему в салоне автомобиля под силу любому автовладельцу. Многие устанавливают фронтальные громкоговорители. Именно с них начинается качественный звук. Они обеспечивают натуральное звучание даже при низкой частотности. Когда этого становится мало, задумываются об использовании сабвуфера. Он подчеркивает глубину басов, усиливает давление звука. С помощью грамотно выбранного и установленного сабвуфера можно полностью изменить звуковое сопровождение.

Описание фазоинвертора

Сабвуферы бывают разнообразны по видам и качеству. Но для достижения наибольшего качества акустики рекомендуется осуществлять оформление их корпусов. Наиболее востребованный метод оформления — закрытый короб и фазоинвертор. Иногда звуковые фанаты предпочитают бандпасс, пассивные излучатели либо акустические нагрузки. Что такое фазоинвертор и как устанавливается — рассмотрим подробно.

Закрытый короб (ящик)

Закрытый короб (ящик) — это корпус динамика. Его объем соизмерим с объемом колонки.

Фазоинвертор для сабвуфера — это конструкция, представляющая собой специальное корпусное отверстие. Также, это может быть встроенная внутрь него труба, которая соединяет внутренний объем и внешнее пространство. По другому она называется порт фазоинвертора. Такая система отличается от закрытого короба тем, что он не гасит колебания исходящие от тыльной части диффузора. А наоборот, таким способом дополняет излучение. Это дает значительное увеличение звука.

Фазоинвертор имеет и другую разновидность — пассивный излучатель. Портом здесь выступает специальная система или простой динамик, который не подключен к усилителю.

Короб Фазоинвертор

Расчет короба

Систему акустики так же как и сабвуферы можно легко просчитать при помощи онлайн программ. Их просто скачать из интернета. Автоматический расчет осуществляется методом подстановки данных о звуковых элементах. Здесь надо выяснить информацию о технических характеристиках необходимых для расчета.

Сабвуфер схема

Всю информацию можно получить из встроенной программы базы данных. Если характеристики уже известны, их вводят вручную. Онлайн программа удобна еще и тем, что дает возможность подобрать динамики которые обеспечат лучшую отдачу.

Самыми простыми формами акустики являются закрытый короб и фазоинвертор. Для них не обязательно знать точные данные. Достаточно расчета с помощью формул.

Как рассчитать закрытый ящик

Понадобиться выяснить три главных показателя динамика. Результатом будет подбор внутреннего объема колонки. Обратите внимание на отношение резонансной частоты в паспорте к добротности. Если показатель меньше цифры 100, не рекомендуется устанавливать этот динамик в закрытом ящике. Так как в запертом корпусе воздух сжимается, и увеличивается жесткость подвески.

Выведены специальные формулы, которые связывают резонансную частоту, добротность и объем: Fc, Qtc, Vb соответственно, с такими же параметрами в паспорте. Формулы можно внимательно рассмотреть на фото.

Пользуясь формулами подбирается необходимый объем корпуса. Важно стремиться к тому, чтобы резонансная частота колонок не была выше 50 Гц. А добротность приближалась к показателю 0,7.

Как рассчитывается фазоинвертор

Расчет фазоинвертора происходит способом выбора динамиков, добротность которых от 0,3 до 0,5, а отношение резонансной частоты 50 (не менее).

Расчет ФИ короба сабвуфера

В этом случае необходимо вычислить следующие параметры:

  1. Объем сабвуфера.
  2. Площадь сечения.
  3. Длину и диаметр трубы.
  4. Порт фазоинвертора.

Информация о коробе подбирается по таким же формулам, как при расчете закрытого ящика. Только здесь отличается добротность колонки: от 0,6 до 0,65. Данные порта выясняются с использованием значения частоты, при которой осуществляется настройка фазоинвертора. Она выбирается наравне с резонансной частотой динамика. Но может быть и меньше. Расчет проводится по формулам, которые также есть на фото.

Длина расчетная иногда получается больше, чем рекомендованное максимальное значение. Но есть способы, которые помогают уменьшить эту длину. Выход круглого фазоинвертора размещается на плоскости панели. Это позволяет выигрывать в длине примерно 0,85. А труба фазоинвертора имеет на конце фланцы, которые способны усиливать эффект в большую сторону.

Примерно 15% от длины позволяет сэкономить размещение фазоинвертора вплотную к одной стороне колонки. Если использовать порт как усеченный конус сечения (круглого или прямоугольного), это даст возможность сделать длину меньше на 35%.

Рекомендации по настройке системы

Вышеперечисленные методы достаточно просты и не требуют сложных приборов для измерения и математических расчетов. Важно учесть еще несколько моментов:

  • частота резонанса должны быть немного ниже частоты резонанса динамиков, находящихся в коробе;
  • фазоинвертор расширяет воспроизводимые частоты в сторону низкой частотности. надо уметь выбрать правильную;
  • при выборе слишком низких частот отдача динамиков упадет.

Короб Фазоинвертор

Для того, чтобы настроить фазоинвертор онлайн, в одной из программ, понадобятся очень точные данные о всех параметрах. Но все равно программа может выдавать большую погрешность. Поэтому большинство пользователей стараются настраивать акустику своими руками.

Все о звуке в деталях

Bass Port – Программа для расчета фазоинвертора

Особенности расчета

Выводы по проблеме “портостроения”

Вот что выяснилось по результатам написания программы для расчёта портов.

1. Увеличение количества портов

1.1. Если общая площадь портов остаётся неизменной, то с увеличением количества портов несколько возрастает их длина, которая в пределе стремится к 1,57 длины исходного одиночного порта.

1.2. Если площадь портов увеличивается, получаем снижение скорости колебаний воздушной массы в портах и снижение шумовых эффектов.

2. Экономия длины порта

Здесь вряд ли можно привести чёткие однозначные рекомендации.

Пользователю придётся самому решать, какой тип порта и с какими параметрами выбрать, исходя из того, что важнее: выигрыш в длине, или бесшумная работа порта.

Начиная с версии 0.6beta, для расчёта минимально допустимой площади порта используются разные значения максимальной скорости, в зависимости от типа порта.

Порты “шумят” всегда. Чаще всего эти шумы маскируются полезным сигналом, но бывает, они становятся весьма заметными и весьма неприятными.

Каждый порт “шумит” по-своему, и порог заметности шума также индивидуален для каждого порта.

Исходя из экспериментальных данных, в программу введены ориентировочные значения скоростей воздушного потока:

– заметные на расстояниях 0,2…1 м (выводятся пурпурным цветом)

– заметные на расстояниях более 1 м (выводятся красным цветом)

Проектируя порт, в окошках результатов вы будете видеть, в какой степени “шумным” окажется данный порт.

3. Геометрия порта

3.1. Простой порт имеет два существенных недостатка:

– органные резонансы (как минимум два)

– повышенные турбулентности на краях порта.

Для устранения этих недостатков применяют порты с непрямой образующей.

3.2. Такие порты позволяют уменьшить площадь поперечного сечения горловины порта, и за счёт этого сократить его длину. При этом возрастает скорость воздушного потока в узкой части порта, а на краях она снижается за счёт увеличения площади выхода. Органные резонансы смещаются в сторону высоких частот или исчезают совсем.

4. Условия выбора того или иного вида порта

4.1. Простой трубчатый порт. Можно использовать, если скорость воздушного потока в нём не превышает 6-9 м/с. Если порт расположить на задней стенке, органные резонансы будут слышны меньше. Правда, при этом задняя панель АС не должна располагаться слишком близко к стене.

Если скруглить края такого порта, можно добиться некоторого снижения шумов. Начиная с версии 0.4beta в программу добавлена возможность расчёта портов со скруглёнными краями.

4.2. Конический порт. Органные резонансы отсутствуют в принципе. Получаем максимально “музыкальный”, но и самый длинный порт. Скорость воздушного потока в узкой части также не должна превышать 6-9 м/с.

4.3. Порт труба-конус (“воронка”). Симбиоз конуса и трубы. Част о ты органных резонансов располагаются выше, чем для трубы, и становятся менее заметными, но не исчезают совсем. Получаем существенную экономию длины в сравнении с конусом.

На узком конце порта скорость потока не должна превышать 9-12 м/с.

4.4. Порт конус-труба-конус (“песочные часы”). Част о ты органных резонансов ещё более сдвигаются вверх, заметность ещё больше падает. Экономия длины при прочих равных немного хуже, чем в случае “воронки”. Но скорость воздуха в горловине можно повысить, уменьшив диаметр трубы, что приведёт к снижению длины порта. Скорость воздушного потока не должна превышать 13-16 м/с.

4.5. Порт плавной криволинейной образующей. Органные резонансы отсутствуют как класс. Экономия длины немного хуже, чем в случае “песочных часов”.

Начиная с версии 0.5beta в программу добавлена возможность расчёта портов с криволинейной образующей.

Скорость воздушного потока также не должна превышать 13-16 м/с

Чтобы лучше понять, экспериментируйте с расчётами, многое прояснится.

Ссылка на основную публикацию