Схема работает по принципу сонара. Ультразвуковой передатчик посылает импульсы, а приемник регистрирует их, если они отразятся от препятствий или преград. Генератор ультразвуковых импульсов, выполнен на элементах микросхемы К561ТЛ2 или ее аналоге. Генератор генерирует частоту около 40 кГц, но ее можно регулировать сопротивлением R14. Питание схемы парктроника происходит от бортовой сети автомобиля от аккумуляторной батареи, через стабилизатор.
Каждый новый импульс на передатчике TX генерируется каждый раз, когда десятичный счетчик К561ИЕ8 находится в состоянии сброса выход Q0. Другие выходы используются для визуализации расстояния от радара до преграды. Отраженный от другого автомобиля или бордюра сигнал улавливается приемником RX и усиливается транзисторами VT1-VT4 и временно переключает триггер на элементах DD1.1 и DD1.2 останавливая работу счетчика. На светодиодном индикаторе загорается соответствующий светодиод, говорящий расстояние до преграды. О самом большом расстояние говорит светодиод HL9, а о минимальном светодиод HL1 и при этом еще заработает звуковая сигнализация.
Регулировкой сопротивления R14 добиваются лучшей чувствительности с частотой около 40 кГц. Настройкой резистора R15 можно задать диапазон между светодиодами. Советую использовать максимальный диапазон на 90 см — по 10 см для каждого светодиода.
Схема парктроника состоит из таймера на микросборке NE555 (отечественный аналог КР1006ВИ1)к выходу которого подключен излучающий светодиод HL1; приёмного фотодиода HL2 с ОУ и детектором; трёх компараторов. Операционный усилитель и компараторы собраны на одной микросхеме LM324 (К1401УД2). Выходная световая сигнализация выполнена на светодиодах HL3-5, звуковое оповещение о препятствие выполнено на таймере LN555 и звуковом динамике Z1. Для стабилизации питания схемы использован стабилизатор напряжения на 15 вольт и конденсатор С5.
Работа схемы: Таймер 555 создает последовательность прямоугольных импульсов, частота следования которых задается цепочкой пассивных компонентов R1, R2, C1 и равна в данной случае 120 Гц. Излучающий инфракрасный светодиод HL1 постоянно посылает эти импульсы на препятствие перед автомобилем. Инфракрасный луч, отражается от них и попадает в приемник на фотодиоде HL2. С фотодиода HL2 сигнал следует на операционный усилитель.
Усиленный сигнал детектируется диодами D2-3 и идет на компаратор, собранный на трех ОУ. Напряжение на входах компараторов прямо пропорционально расстоянию до преграды. Делитель напряжения, собранный на сопротивлениях R7–R10 задает необходимый порог срабатывания компараторов. Через диоды D4–D5 и сопротивления R15–R17 сигнал с компараторов проходит на таймер VD3. К третьему выходу таймера подсоединен звуковой пьезоэлемент Z1 типа Зп-22. При расстоянии до преграды около 30см начинает светится первый светодиод и начинают звучать редкие звуковые сигналы – 1-2 раза в секунду. При расстоянии около 15 см – светится второй светодиод и слышны более частые 3-4 раза в секунду звуковые команды. При расстоянии в 7 см и менее– светится последний светодиод и слышны частые звуковые сигналы. Приведенные расстояния можно отрегулировать в зависимости от использованных в конструкции типов инфракрасных компонентов.
Схема парковочного радара выполнена на печатной плате. Инфракрасные фото и светодиоды можно взять почти любые, но обязательно разделить светонепроницаемой трубкой. Также требуется продумать защиту от солнечной засветки. Устанавливать излучающий и приёмный компоненты можно впереди или сзади транспортного средства.
Данная радиолюбительская разработка, это еще одна попытка создать простой парковочный датчик своими руками, сигнализирующего о приближении транспортного средства к препятствию. В схеме применяется отраженный ИК-луч, точнее инфракрасный светодиод излучает вспышки с частотой следования 5-6 кГц.
ИК светодиод должен быть направлен в сторону вероятного препятствия. Излученный им свет отражается от препятствия и принимается фотодиодом, на котором генерируется переменное напряжение с частотой идущих вспышек. Сила светового потока, попадающего на фотодиод прямо пропорционально расстоянию до преграды. Поэтому, чем она ближе, тем выше значение этого переменного напряжения. Схема представляет собой типовой двух каскадный усилитель переменного тока и индикатор уровня переменного напряжения на микросборке AN6884.
Индикация реализована на пяти светодиодах, чем больше их светится, тем ближе препятствие. Регулировкой подстроечного потенциометра на выходе фотодиода можно настраивать чувствительность приемного тракта, т.е дальность действия и индикации, чтобы получить наилучший результат.
Генератор ИК-импульсов состоит из ИК-светодиода, транзисторного токового ключа VT3-VT4 и генератора импульсов на двух элементах микросборки D1. В роли D1 подойдет любая КМОП микросборка, у которой имеется как минимум два инвертора. Импульсы с генератора следует на транзисторный ключ, который осуществляет коммутацию ток протекающего через ИК-светодиод.
Принимает отраженные вспышки фотодиод FD1. Эго можно позаимствовать от ПДУ старых телевизоров. Кроме ИК-света фотодиод фиксирует и солнечный свет, поэтому, чтобы отделить от них нужный сигнал применяется схема, в которой фотодиод включен как фоторезистор, через который протекает некоторый ток через R1. Напряжение в точке соединения R1-FD1 обладает постоянной составляющей, которая зависит от резистора R1 и солнечного излучения.
Затем, сигнал попадает на усилительный каскад на биполярных транзисторах VT1 и VT2, по схеме с ОЭ. Переменный резистор чувствительности R7 включен на входе усилителя, чтобы защитить усилитель от возможной перегрузки.
Степень близости к преграде оценивают по величине переменного напряжения на коллекторе биполярного транзистора VT2. Измеритель этого напряжения собран на микросборке AN6884 по типовой схеме. Чем выше уровень переменного напряжения, следует на восьмой вывод, тем большее горит светодиодов HL1-HL5.
Фотодиод и ИК-светодиод должны быть расположены в одной плоскости и ориентированы в одну сторону (не друг на друга, а на преграду). Расстояние между ними где то 30 мм. Между ними должна быть смонтирована непрозрачная перегородка, блокирующая попадание прямого света от HL6 на HD1. Сверху рекомендуется сделать подобный непрозрачный козырек, понижающий в разы количество солнечного света, идущего на датчик.
ИК-датчик способен заметить препятствие на расстоянии до одного метра, при обнаружении он посылает импульсную посылку на детектор тонального сигнала, который запускает таймер типа LM555 генерирующий ШИМ-сигнала для пьезозуммера. По звуку этого зуммера водитель ориентируется, на каком расстоянии от транспортного средства имеется препятствие.
В роли ИК датчика в данном случае служат два ИК-светодиода LED1 и LED2 и фототранзистор Q1. Светодиоды создают луч, который при его отражении от препятствия идет на фототранзистор, тем самым, открывая его. Выходной сигнал с транзистора следует с частотой 20 КГц, поэтому мы используем детектор тонального сигнала LM567. Микросхема способна интерпретировать частоту, генерируемую другим элементом, и дать выходной сигнал в соответствии с текущим приложением. Поэтому, LM567 генерирует подходящий сигнал для запуска таймера на LM555, который собран по схеме нестабильного мультивибратора. Выходной сигнал таймера следует на светодиод для рабочей индикации и на пьезозуммер для звуковой сигнализации о наличии препятствия, а также идет через транзистор Q3 на лампу DS1 для световой сигнализации обнаружения преграды.
Собранная радиолюбительская конструкция легко встраивается в задний бампер автомобиля с заранее изготовленными отверстиями для светодиодов и фототранзистора ИК датчика. Пьезозуммер и лампа индикации монтируются в приборной панели перед глазами у водителя.
СХЕМА ПАРКОВОЧНОГО РАДАРА
Изготовленное мной устройство предназначено для помощи в безопасной парковке автомобиля — парковочный радар. Всем автомобилистам известно как бывает сложно припарковать автомобиль в городских условиях. Парковочный радар (парктроник) служит для сигнализации при приближении автомобиля к какому-либо препятствию или другому автомобилю. В отличии от промышленных образцов устройство работает на инфракрасных лучах. За основу конструкции взята одна схема, которая была доработана и усовершенствована. Усовершенствования заключаются в том, что стала возможна одновременно звуковая и светодиодная сигнализация о приближении к препятствию. Принцип работы парковочного радара заключается в следующем: инфракрасный светодиод постоянно излучает импульсы.
Инфракрасный луч попадая на препятствие, отражается от него и попадает на приемный фотодиод. Чем ближе препятствие, тем сильнее отраженный сигнал. Далее сигнал, детектируется и попадает на операционные усилители. Напряжение, попадающее на усилители, прямо пропорционально расстоянию до объекта. Усилители включают соответствующие сигнальные светодиоды и звуковую сигнализацию. Звуковая сигнализация позволяет водителю не отвлекаться, наблюдая за светодиодами при парковке. Принципиальная эл. схема парковочного радара показана на рисунке ниже.
Схема парктроника состоит из: таймера VD1 на микросхеме NE555 – аналог КР1006ВИ1 с излучающим светодиодом HL1; приёмного фотодиода HL2 с операционным усилителем и детектором; трёх компараторов. Операционный усилитель и компараторы собраны на донной микросхеме типа LM324 – аналог К1401УД2, которая представляет собой линейный светодиодный индикатор с четырьмя операционными усилителями в одном корпусе. Выходная световая сигнализация собрана на светодиодах HL3-5, выходная звуковая сигнализация собрана на таймере VD3 LN555 и звуковом элементе Z1. Для стабилизации питания схемы использован стабилизатор КРЕН и конденсатор С5.
Работа схемы радара. Таймер VD1 генерирует последовательность прямоугольных импульсов, частота которых определяется цепочкой R1, R2, C1 и равна в данной схеме 120 Гц. Инфракрасный светодиод HL1 постоянно излучает эти импульсы. Инфракрасный луч, попадая на препятствия, отражается от них и попадает в приемный фотодиод HL2. С фотодиода HL2 сигнал поступает на операционный усилитель, собранный на ¼ микросхемы VD2.
Усиленный сигнал детектируется диодами D2-3 и поступает на компаратор, собранный на трёх оставшихся операционных усилителях микросхемы. Напряжение на входах компараторов прямо пропорционально расстоянию до препятствия. Делитель напряжения, собранный на резисторах R7–R10 определяет порог срабатывания компараторов. Каждый компаратор включает свой светодиод в зависимости от величины напряжения, поступающего с детектора. Через диоды D4–D5 и резисторы R15–R17 сигнал с компараторов поступает на таймер VD3 на микросхеме NE555. К выходу 3 таймера подключен звуковой пьезоэлемент Z1 типа Зп-22. При расстоянии до препятствия 30см загорится первый светодиод и будут слышны редкие звуковые сигналы примерно 1-2 раза в секунду. При расстоянии до препятствия 15 см — загорится второй светодиод и будут слышны более частые 3-4 раза в секунду звуковые сигналы. При расстоянии до препятствия 7 см – загорится третий светодиод и будут слышны частые, более 4-х раз в секунду звуковые сигналы. Приведенные расстояния могут изменяться в зависимости от применённых в схеме типов инфракрасных элементов и свойств отражающей поверхности препятствия.
Конструкция и детали. Схема самодельного парковочного радара собрана на печатной плате. Инфракрасные фото и светодиоды можно применить любые и монтировать в одной паре, но обязательно разделить светонепроницаемой перегородкой или трубкой. Необходимо предусмотреть защиту от солнечной засветки. Устанавливать излучающий и приёмный светодиоды можно впереди или сзади автомобиля. Можно установить сразу несколько пар светодиодов в разных местах автомобиля, но для этого нужно немного доработать схему. Я установил светодиоды в задней фаре. Сигнальные светодиоды можно применить любые с цветом свечения по вашему вкусу. Автор…
Что из себя представляет система парктроник для автомобиля
Один из наиболее сложных маневров при управлении автомобилем – это задний ход. Но хотим мы того или нет, применять подобный режим движения приходится постоянно, особенно при парковке авто. Чтобы обезопасить управление машиной при такой ситуации, и родился парктроник.
Что он собой представляет, и каково устройство парктроника
У подобного устройства много названий. Его называют и парктроник, и парковочный радар, и парковочный сонар. Из этих названий становится ясен принцип его работы – обнаружение препятствия, измерение расстояния до него и предупреждение водителя. Происходит подобное следующим образом – когда включается задний ход, начинает излучать генератор ультразвука, входящий в состав парктроника. В случае появления по пути движения автомобиля или рядом препятствия, от него появляется отраженный сигнал, который воспринимает схема парктроника. По времени запаздывания такого сигнала система определяет расстояние до препятствия и предупреждает об этом водителя авто с помощью средств сигнализации и индикации, предусмотренных конструкцией изделия.
Какой бывает система парктроник
Для понимания, что собой представляет подобное устройство, достаточно взглянуть на рисунок: В его состав входят:
электронный блок;
датчики, размещаемые на бампере авто;
устройство отображения и индикации.
Это достаточно укрупнённое изображение, но оно позволяет понять, что собой представляет изделие. Существующие виды парктроников достаточно разнообразны и многочисленны. Можно определить такие признаки, по которым они различаются между собой:
Число подключаемых датчиков. Их может быть два, а может быть и восемь. От количества зависит возможность обнаружения препятствия при маневрировании задним ходом и стоимость самого парктроника. Если авто оборудовано двумя датчиками, то вероятность того, что препятствие останется незамеченным, довольно велика. Если же устройство содержит восемь датчиков, то вероятность ошибки минимальная. Способ отображения расстояния. Система может использовать индикаторы расстояний с одной шкалой, с двумя шкалами и цифровым отображением расстояния до препятствия.
Средство отображения информации. У парктроника данные, которые получает устройство в результате его работы, могут отображаться на:
специальном устройстве;
жидкокристаллическом дисплее;
ветровом стекле;
зеркале заднего вида авто.
Способ передачи информации к электронному блоку управления от датчиков. Такая система, как парктроник, может использовать для этих целей передачу данных как по кабелю, так и по радиоканалу.
Применение дополнительных устройств. Есть специальные системы, которые в своей работе используют дополнительно видеокамеру, обеспечивающую отображение пространства сзади авто в зеркале заднего вида. Считается, что такой парктроник с камерой заднего вида создает возможности для наиболее безопасных условий при маневрировании задним ходом. При этом не стоит забывать, что хотя на автомобиле установлен парктроник, зеркало заднего вида так же, с не меньшей эффективностью, позволяет вовремя оценить наличие препятствий позади машины.
Места расположения датчиков. Первоначально планировалось располагать их только на поверхности заднего бампера авто, но в последующем система парктроник стала использовать и датчики, установленные на переднем бампере.
Как подключить парктроник
Задача эта ответственная, но ее вполне возможно выполнить собственными силами, следуя инструкции. Как правило, схема подключения требует соединить датчики, устройство отображения и электронный блок. Его обычно устанавливают в багажнике авто на любом удобном месте. Следующей задачей схема подключения предполагает установку датчиков. Если их планируется больше двух, то в первую очередь устанавливаются крайние, на радиусах изгиба заднего бампера, затем ставятся остальные на одинаковом расстоянии. Перед их установкой подготавливают поверхность, очищая ее от пыли и грязи, и уже после этого на ней производят разметку на поверхности заднего бампера, где они будут располагаться. Система обычно предусматривает определенное расположение датчиков заднего вида, в том числе, как правило, необходимо выдержать расстояние от земли пятьдесят сантиметров. В намеченных местах заднего бампера просверливаются отверстия, в которых затем устанавливаются датчики. Чтобы система в дальнейшем работала надежно, их дополнительно крепят к бамперу при помощи клея или герметика. После этого надо подключить датчики к блоку управления, как предусматривает схема парктроника. Если устройство отображения планируется располагать на передней панели или на зеркале заднего вида, то провода для подключения надо будет прокладывать под обшивкой салона, для чего придется ее снимать.
Все провода, использованные для подключения датчиков заднего вида, лучше всего объединить в единый жгут с помощью хомутов, в местах переходов через отверстия надо принять дополнительные меры защиты от повреждения. После того, как схема подключения всех устройств будет выполнена, парктроник должен быть протестирован. Для этого система парктроник проверяется в разных условиях на возможность обнаружения препятствий при маневрировании. Если изделие работает правильно, своевременно обнаруживает и предупреждает о наличии препятствий, то значит, у вас получилось подключить парктроник.
Парктроник для авто, его возможные отказы и неисправности
Как правило, причинами неисправностей парктроника служат отказы датчиков и проводов в жгутах. Конечно, не исключено, что отказ произошел в электронном блоке управления, из-за чего сама система парктроник или прекратила работать, или работает с нарушениями. Но такой отказ является достаточно редким.
Например, внешним проявлением отказа порой может служить продолжительный писк, который выдает система без всяких видимых поводов. В этом случае возможной причиной может быть забрызгивание датчика заднего вида грязью, после устранения загрязнения парктроник сможет работать, как раньше. Другой причиной может служить замыкание отдельных проводов, которыми выполнено подключение к центральному блоку датчиков. В этом случае правильная схема работы изделия будет нарушена, и для восстановления его работоспособности потребуется проведение диагностики.
Так же будет проявляться замыкание влагой проводов для подключения датчиков, вследствие чего правильная схема прохождения сигналов нарушится. Однако после просушки проводов, работоспособность должна восстановиться.
Само по себе такое устройство, как парктроник, нельзя считать обязательным элементом автомобиля, но тем не менее, оно оказывается полезным при выполнении сложных маневров, особенно для начинающих водителей. Парктроник может быть разного вида и конструктивного исполнения, но в любом случае для его работы требуется подключение датчиков заднего обзора. ” alt=””>
Реально ли сделать парктроник своими руками?
Этот или подобные вопросы задаются на автомобильных форумах, и не редко. Кто спрашивает? Спрашивают неугомонные мастера, которым доставляет удовольствие постоянно проводить тюнинг своего автомобиля. Если вы имеете понятие об основах электроники, умеете отличать резистор от транзистора, пользоваться паяльником, и вам это доставляет удовольствие, то сделать парктроник своими руками для вас не проблема.
Схема традиционного парктроника
Но, вначале давайте поймем суть вопроса. Парковочные устройства или парктроники являются хорошими помощниками для автовладельцев особенно в суматошно-смятых условиях городского движения и парковки. Без сомнений, при помощи парктроника намного облегчается процесс парковки. Но, не следует забывать, что парковочный радар – это не панацея, и тем более, в случае ЧП, объяснения о том, что у вас вышел из строя парктроник не помогут.
Именно поэтому к выбору парктроника, а тем более, если вы решили изготовить парктроник своими руками, нужно относиться очень и очень внимательно. Помимо подбора всех элементов, которые включает в себя схема парктроника, нужно обязательно учесть конструктивную особенность вашего авто. Речь идет о бамперах, куда, собственно, вы и будете устанавливать датчики или видеокамеры. Чтобы не оказалось после установки датчиков, что они «видят» только асфальт или только небо.
Врезной датчик – от 2-х до 8-ми. Естественно, чем больше датчиков, тем больший захват площади.
Индикатор расстояния: с одной шкалой, ЖК-индикатор, с двумя шкалами и т.д. Вплоть до вывода видеосигнала на лобовое стекло. Прогресс – он неумолимо движется вперед.
Электронный блок управления всей этой системой.
Если речь идет о самом элементарном устройстве, коим и может стать ваш самодельный парктроник, то 2-3-х датчиков вполне достаточно для схемы парктроника.
Если вы собираетесь изготовить парктроник своими руками, то должны понимать, что все комплектующие для него должны быть только высокого качества. А схема парктроника собрана идеально. Отказывают или дают сбои даже самые продвинутые парктроники, но этот факт никоим образом не освобождает водителя от ответственности в случае ДТП.
Комплектующие для сборки самодельного парктроника
На примере опыта одного из «кулибиных» мы покажем, что нужно, чтобы собрать самодельный парктроник. Более подробные схемы парктроника можно найти на соответствующих радиоэлектронных ресурсах сети.
Итак, комплект самодельного парктроника:
Контроллер Arduino Duemilanove – это и есть та самая аппаратная вычислительная платформа, по сути – мозг вашего самодельного парктроника.
Ультразвуковые сонары (датчики) расстояния: Ultrasonic Range Finder
Пластиковый корпус (бокс)
Макетная плата
Светодиод, желательно трёхцветный
Провода, соответствующие длине прокладки
Источник питания – АКБ 9В
Сборка самодельного парктроника
Плату контроллера устанавливаете в пластиковый корпус на силикон или клей, затем запитываете контроллер и ультразвуковой датчик. Определив, какие выводы светодиодов отвечают за какой цвет, присоединяете их к соответствующим выводам контроллера.
Настройку программы контроллера производите в соответствие с его инструкцией, увеличив или уменьшив сигнал посылок к датчику. Установку парктроника на автомобиль производите исходя из его конструктива. Датчики следует устанавливать с минимальной «мертвой зоной». Прежде, чем применить свой самодельный парктроник, проведите тестирование, и не одно.
Если вы уверены в своих знаниях и умении собрать парктроник своими руками, то делайте это. Если нет, то проще купить заводской парктроник, и установить его на авто самостоятельно. Безопасность автомобиля, как своего, так и чужого, дело ответственное. Взвесьте все «за» и «против».
Удачи вам в изготовлении парктроника своими руками.
Парковочный радар – схема
Парковочный радар – безусловная помощь автоводителю во время парковки, устройство, которое можно сделать самостоятельно. Парковка в условиях города зачастую становится настоящим испытанием для того, кто находится за рулем.
Парктроник сигнализирует об имеющихся в непосредственной близости препятствиях, что помогает предотвратить столкновение. Действие данной модели основано на инфракрасных лучах, что, собственно, и отличает ее от аналогичных устройств промышленного производства. Импульсы, которые постоянно излучает светодиод, есть суть принципа работы парктоника.
В основе модели – доработанная схема, обеспечивающая одновременное срабатывание двух сигналов – звуком и светом.
Принцип действия прибора
Как уже было отмечено, работа данной модели основана на инфракрасных лучах, которые, отражаются от препятствий, и попадают на фотодиод. Сигнал усиливается, если расстояние до препятствия сокращается, и наоборот, ослабевает по мере удаления от него.
После этого он детектируется, а затем поступает на операционные усилители, которые обеспечивают включение сигнализации и сигнальных светодиодов. Напряжение, по отношению к расстоянию до препятствия, находится в прямой пропорции.
Благодаря «сигналке», водитель может не отвлекаться при парковке, и держать в поле зрения светодиоды. Внизу находится электросхема данного устройства.
В схему парктроника входит следующее:
? VD1 – таймер с HL1 – светодиодом излучающим;
? HL2 – приемный фотодиод.
Светодиоды HL3-5 использованы для сборки выходной световой «сигналки». Звуковой элемент Z1 и таймер VD3 LN555 – для звуковой сигнализации на выходе. Конденсатор С5 и стабилизатор КРЕН применялись для стабилизации питания.
Работа схемы парктоника. Импульсы генерирует таймер VD1, их частота равна 120 Гц. Она определяется последовательно R1, R2, C1. Эти импульсы излучает HL1 – инфракрасный светодиод, а принимает их HL2 – фотодиод приемный, но уже после того, как они отразились от препятствия. HL2 отправляет сигнал на операционный усилитель, который его усиливает, и далее он детектируется с помощью диодов D2-3.
Следующий шаг – компаратор, куда поступает сигнал, предварительно усиленный. Он собран на операционных усилителях – 3-х оставшихся. Напряжение, по отношению к расстоянию до препятствия, находится с ним в прямой пропорции. У компараторов порог срабатывания определяет делитель напряжения, который собран на резисторах R7–R10. Светодиод каждого компаратора включается под влиянием поступающей с детектора величины напряжения.
Далее: куда поступает сигнал с компараторов? На таймер VD3, через резисторы R15-R17 и диоды D4-D5, в микросхеме NE555. Z1 типа Зп-22 – звуковой пьезоэлемент, подключен выходу 3 таймера. Если до препятствия остается расстояние 30 см – вспыхивает 1-й светодиод, при этом начнут раздаваться звуковые сигналы, поступающие относительно редко, около 1-2 в сек.
Если до препятствия остается 15 см – вспыхивает 2-й светодиод, при этом раздаются звуковые сигналы более часто – порядка 3-4 в сек. Если же до препятствия остается расстояние 7 см – вспыхивает 3-й светодиод и поступающие звуковые сигналы слышны более 4 раз в секунду. Указанные расстояния зависят от свойств отражающей поверхности и типа инфракрасных элементов, использованных в схеме, и в связи с этим, они могут быть несколько иными.
Детали и конструкция. Основой для схемы послужила печатная плата. Для самодельного парктоника можно использовать любые светодиоды и инфракрасные фото, монтируя их в паре, но при этом следует разделить их трубкой или светонепроницаемой перегородкой.
Очень важно установить защиту от засветки солнечными лучами. Можно устанавливать светодиоды на автомобиль сзади, например, в задней фаре или спереди, а так же несколько пар сразу, в разных местах, но только если слегка доработать схему. Цвет свечения сигнальных светодиодов выбирается индивидуально, по вашему желанию.