Схема роторного двигателя

Роторный двигатель: принцип работы, схема роторного двигателя

Потребность в двигателе малых габаритов и большой мощности заставляет изобретателей и конструкторов продолжать поиски новых решений. Несколько лет назад в ФРГ появился роторный двигатель Ванкеля. Приводимые в печати его показатели гораздо выше, чем у поршневых двигателей. Но, в то же время, двигатель Ванкеля и по сей день не смог вытеснить обычные бензиновые моторы, в первую очередь, потому, что до сих пор не найдены надежные конструкции скользящих ребер ротора и системы охлаждения ротора, а также планетарной передачи на выходной вал двигателя.

В 1960 г. автор этой статьи совместно с инженером А. А. Светикас сконструировал маленький вертолет ранцевого типа, для которого необходимо было создать двигатель малого веса, но большой мощности. За основу была взята упомянутая система Ванкеля, но цилиндр сложной формы (по кривой, называемой эпициклоидой) был заменен двумя спаренными простыми цилиндрами, а планетарная передача была заменена эксцентриком на валу двигателя; уплотнение было принято пластинчатое.

Первая модель двигателя нашей конструкции представляла собой роторный (беспоршневой) двигатель, имеющий очень небольшие габариты и высокую удельную мощность. Приведем сравнение объема цилиндра и веса, приходящихся на 1 л. с. мощности, нашего двигателя и обычного поршневого четырехтактного двигателя:

Поршневой Роторный
Объем цилиндра, см³ 40 4
Вес, кг 2,8 0,38

Такие высокие показатели роторного двигателя достигаются главным образом благодаря отсутствию кривошипно-шатунного механизма и большому числу оборотов двигателя; используются высокие степени сжатия, а это важный фактор обеспечения экономичности двигателя. Кроме того, полное отсутствие клапанного устройства делает роторный двигатель значительно менее сложным и более дешевым в производстве, чем поршневой. В роторном двигателе нет движущихся возвратно-поступательно инерционных масс, что также представляет большое преимущество перед обычными поршневыми двигателями.

Роторный двигатель при габаритах 150х150х230 мм развил мощность 30 л. с. при 1300 об/мин, степени сжатия ξ = 6 и удельном расходе топлива 240 г/л., с.-час. Двигатель имеет только десять основных деталей (без карбюратора и свечи зажигания). Роторный двигатель работает по четырехтактному циклу; за один оборот ротора и вала производится три рабочих хода.

Рис. 1. Принцип работы (I—IV) и кинематическая схема роторного двигателя


Обозначения позиций на схеме — см. рис. 2.

В положении I (рис. 1) объем всасывания минимален и заключен между уплотняющими ребрами А и С. Между ребрами А и В происходит сжатие, а между В и С — рабочий ход, т. е. горение рабочей смеси.

В положении II уплотнительное ребро С откроет выхлопное отверстие, и начнется фаза выхлопа; объем всасывания, заключенный между ребрами А и С, увеличился по сравнению с положением I; сжатие происходит между ребрами А и В, а между ребрами В и С завершается рабочий ход.

В положении III выхлопное и впускное отверстия разделены между собой ребром С; происходят одновременно выхлоп и всасывание. Объем между ребрами А и В минимален — производится зажигание смеси.

В положении IV объем между ребрами А и В увеличивается, причем расстояние от центра вала до ребра В больше, чем до ребра А, и ротор поворачивается по часовой стрелке. Зазор между ротором и корпусом в точке D должен быть не более 0,2—0,5 мм, чтобы выхлопные газы не могли зажечь смесь, поступающую в двигатель из карбюратора. Кинематическая схема роторного двигателя приведена на рис. 1 (справа внизу на рисунке), а конструктивная схема — на рис. 2.

Рис. 2. Конструктивная схема роторного двигателя: поперечный разрез (показан вариант с водяным охлаждением) и продольный разрез (вариант с воздушным охлаждением).


1 — корпус двигателя; 2 — ротор; 3 — продольные уплотнения — лопасти ротора;
4 — боковые (торцевые) уплотнения; 5 — медно-графитовый подшипник скольжения;
6 — неподвижная центральная шестерня, связанная с ротором внутренним зацеплением 7; 8 — правый эксцентрик; 9 — левый эксцентрик с валом;
10 — балансиры; 11 — стакан прерывателя; 12 — правый фланец; 13 — крышка-фланец, в которой закреплен вал неподвижной шестерни; 14 — втулка;
15 — стяжная шпилька между эксцентриками; 16 — левый фланец; 17 — маховик-вентилятор; 18 — кожух маховика-вентилятора.
А — место свечи; Б — выхлоп; В — место карбюратора; Г — окно всасывания;
Д — распределительный кулачок зажигания; Е — место магнето; Ж — подача масла от маслонасоса; И — место маслонасоса и бензонасоса; К — поток воздуха.

В корпусе 1 двигателя на медно-графитовых подшипниках 5 вращается трехгранный ротор 2 с тремя лопастями (продольными уплотнениями) 3 и боковым (торцевым) уплотнением 4. Ротор 2 описывает круговую орбиту вокруг неподвижной шестерни 6, связанной с ротором внутренним зацеплением 7, и вращает эксцентрик 9, выполненный заодно с валом. Вращающийся ротор с эксцентриками сбалансирован балансирами 10 для устранения вибрации. При батарейном зажигании для опережения зажигания должен быть установлен стакан 11, на котором крепится прерыватель.

Роторный двигатель можно применять на мотоциклах и автомашинах при воздушном охлаждении и на мотолодках при водяном охлаждении.

Н. Н. Мельник, «Катера и яхты», 1965 г.

О конструкции роторного двигателя для самостоятельного изготовления см. на следующей странице.

Поделитесь этой страницей в соц. сетях или добавьте в закладки:

Устройство и принцип работы роторного двигателя

Не все знатоки автомобилестроения знают, что в разное время в разных странах мира, включая СССР, на авто ставились необычные роторные двигатели внутреннего сгорания. Этот уникальный агрегат имеет свою большую историю и, возможно, хорошие перспективы на применение в будущем.

Что представляет собой роторный двигатель Ванкеля

Это простой по техническому решению силовой агрегат. Вместо нескольких поршней с кольцами и шатунами, он имеет один треугольный ротор, посаженный на вал. При этом вал не коленчатый, а эксцентриковый. Камеры сгорания расположены равномерно поочередно по всему кругу вращения ротора.

Роторный двигатель

В роторном ДВС в 2 с лишним раза меньше деталей в сравнении с поршневым вариантом. Нет головки блока цилиндров с системой клапанов в её привычном виде и самой поршневой группы. Значительно меньше вес и габариты.

В настоящее время известно 5 разных типов роторных ДВС. Между собой они имеют существенные конструктивные отличия. Но главный принцип един для всех типов – ротор на эксцентриковом вале вместо поршней на кривошипно-шатунном механизме.

История создания роторного двигателя

Силовые агрегаты с ротором вместо поршневой группы получили устойчивое название «двигатель Ванкеля», по фамилии изобретателя. На самом деле в мире было разработано несколько типов роторных моторов, отличных от изобретения Ванкеля. Но первым в этой области еще в 1920-ых годах начал работать именно немецкий инженер Фридрих Ванкель.

Для двигателя требовались узлы и детали, производство которых возможно только с применением высоких технологий металлообработки, точнейшей подгонки, с чем в то время были определенные трудности. Поэтому быстро запустить изделие в серию сразу не получилось. К тому же началась Вторая мировая война, когда требовались не экспериментальные, а серийные проверенные изделия.

Работы над двигателем были завершены уже во Франции, куда попало оборудования из побежденной Германии, в 1957 году, в компании NSU под руководством инженера Вальтера Фройде.

Применение двигателя Ванкеля на Западе и в СССР

Первый роторный двигатель мощностью 57 л.с. был установлен в 1957 году на спорткар фирмы NSU «Спайдер». Спорткар развивал невероятные для того времени и такой мощности ДВС скорость – 150км/час.

Автомобиль NSU Spider

С 1963 года роторные двигатели стали использовать на серийных автомобилях для населения. Несколько лет их ставили на «Мерседесы», «Шевроле» и «Ситроены». Но двигатель показал ряд существенных недостатков. В результате производители вернулись к использованию классических, проверенных поршневых ДВС.

Настойчивее остальных оказались японские автопроизводители. Они использовали роторные ДВС на некоторых моделях «Мазда». Устранялись слабые места, увеличивался моторесурс до капремонта, снижалось потребление топлива. Однако по ряду причин и японцы вернулись к классическим ДВС . Последняя Мазда RX Spirit R с роторным двигателем сошла с конвейера в 2012 году.

В СССР первый роторный двигатель отечественного производства ставился в 1974 году на легендарную «копейку» — ВАЗ 2101.

Для его создания было организовано специальное конструкторское бюро. Прообразом служил двигатель Ванкеля. Было изготовлено около 50 опытных образцов с маркировкой ВАЗ 311. ВАЗы с ними не продавались населению, а поступили в распоряжение сотрудников ГАИ и КГБ в качестве служебных машин.

Поначалу «копейки» с этим силовым агрегатом вызывали восхищение своей мощью, динамикой разгона, низким шумом и плавностью хода. Но уже через год на ходу осталась только одна машина. Двигатели остальных вышли из строя. Основной причиной поломок стала ненадежность уплотнений, обеспечивающих герметизацию камер сгорания во время вспышки топлива.

Работы над отечественным роторным ДВС продолжались, и были созданы мощные двухсекционные ВАЗ 411 и 413 мощностью 120 и 140 л.с. «Жигули» с этими двигателями снова попали на службу в силовые структуры.

Данное достижение советского автопрома не афишировалось. В народе лишь ходили слухи о том, что сотрудники КГБ ездят на скоростных авто с невероятными секретными двигателями.

Затем были разработаны роторные двигатели ВАЗ 414 и 415. Это были более совершенные универсальные агрегаты. Их можно было ставить как на вазовские «восьмерки» и «девятки», так и на не менее популярные в то время «Москвичи» и «Волги».

Последняя разработка ВАЗ 415 так и не была использована. Ее предшественник, ВАЗ 414 с 1992 года ставился на популярной модели авто ВАЗ 2109 («Спутник», «Самара»).

«Девятки» с этими двигателями обладали необычными характеристиками. Разгон до 100 км/ч за 8 секунд, возможность длительной работы на предельно высоких оборотах. ВАЗ 414 потреблял меньше топлива (14-15 л на 100 км), чем предыдущие роторные ДВС (18-20 л на 100 км). Но все равно больше, чем поршневой мотор.

Однако и на ВАЗе роторные ДВС не смогли конкурировать с традиционными, и вскоре их использование было прекращено.

Работы над усовершенствованием роторных ДВС ведутся в мотоциклетной отрасли. В начале 1980-ых был создан мотоцикл Norton с двигателем Ванкеля, который показал невероятные результаты. Сегодня компания выпускает байки с таким двигателем объемом 588 куб.см. Ведутся работы над новым мотором с объемом 700 куб.см.

Автомобилей в такими двигателями сегодня не выпускают. Не исключено, что автопроизводители могут вести конструкторские работы в этом направлении без афиширования, втайне от конкурентов.

Устройство и принцип работы роторного двигателя

Принцип работы и устройство роторного ДВС одновременно схож с работой обычного поршневого двигателя и электродвигателя. Так же, как поршневой ДВС роторный вариант имеет камеры сгорания, системы впрыска топлива, выхлопа и зажигания. Сходство конструкции с электродвигателем в том, что ротор получает энергию при вращении внутри корпуса. (Кроме роторного ДВС с возвратно-поступательным движением вала).

Электродвигатель получает кинетическую энергию за счет перемещения электромагнитного поля. Роторный ДВС – за счет воспламенения топливно-воздушной смеси и резкого роста давления в камерах сгорания, так же, как и поршневые ДВС.

На сегодня известны 5 типов роторных моторов:

  1. С возвратно-поступательным движением вала. В таких типах ДВС ротор и вал не делают полных оборотов вокруг оси.
  2. Классический двигатель Ванкеля с планетарным вращением вала.
  3. Двигатели, в которых камеры сгорания расположены по спирали.
  4. Двигатели с равномерным вращением вала с камерами сгорания, расположенными по спирали без уплотнительных элементов.
  5. Двигатели с пульсирующим вращением.

Как и поршневые ДВС, роторные варианты имеют 4 рабочих такта:

  1. Впрыск топливно-воздушной смеси.
  2. Сжатие смеси.
  3. Воспламенение.
  4. Выпуск.

Рабочие циклы роторного двигателя

В обычных поршневых двигателях впрыск топлива и герметичность камеры сгорания обеспечиваются работой системы клапанов и поршневыми кольцами. В разных типах роторных ДВС последовательность тактов обеспечивается по-разному. В одних уменьшается объем камеры сгорания и обеспечивается сжатие смеси за счет перекрытия камеры вершиной ротора. В других – за счет уплотнений с механическим приводом. Но принцип работы един для всех типов.

  1. Воспламенение топливной смеси многократно повышает давление в камере сгорания.
  2. Давление дает кинетический импульс плоскости ротора и поворачивает его.
  3. Ротор передает крутящий момент через вал и зубчатую шестерню далее к механизмам авто. Плоскость ротора доходит до окна выхлопа, окно открывается и в него сбрасываются отработанные газы.
  4. Цикл повторяется.

Преимущества и недостатки

Роторный двигатель имеет набор больших преимуществ перед традиционным поршневым.

Главное преимущество – простота конструкции. Из-за отсутствия поршневой и кривошипно-шатунной группы узлов роторный двигатель почти в два раза легче и компактнее обычного. Легкий вес позволяет равномерно распределить нагрузку по всей базе автомобиля. Это улучшает управляемость, повышает динамические показатели автомобиля.

  • Компактность позволяет увеличить размер салона.
  • Ротор вращается плавно, без вибраций от взрыва топливной смеси в каждом цилиндре, равномерно выдает мощность.
  • При том же объеме камер сгорания роторный двигатель значительно мощнее.
  • Простота конструкции и минимум деталей облегчают ремонт.

Поэтому кажется, что весь мировой автопром давно и полностью должен был отказаться от поршневых двигателей в пользу роторных. Но этого не произошло. Следовательно, роторный вариант имеет ряд существенных недостатков, которые на сегодняшний день перевешивает все его плюсы. Недостатки в следующем:

  • Роторный двигатель потребляет намного больше топлива. Это крупный минус в наше время, когда каждый автопроизводитель стремится сделать свое авто как можно более экономичным.
  • Повышен расход масла – 0,5 литра на 1 тыс. км пробега. Долив масла требуется каждые 4-5 тыс. км. Отсутствие масла приводит к мгновенному выходу ДВС из строя.
  • Производство ротора и криволинейных камер сгорания требуют высочайшей технологической точности на дорогом сверхточном оборудовании. Это повышает стоимость двигателя.
  • Особенность линзовидных камер сгорания в том, что они поглощают больше тепла при работе. В итоге двигатель склонен к перегреву, закипанию охлаждающей жидкости в системе охлаждения, что мешает в эксплуатации авто и приводит к ускоренному выходу из строя деталей двигателя.
  • Роторный двигатель имеет своё слабое место. Уплотнители, обеспечивающие герметичность камеры сгорания в момент воспламенения топливной смеси, не могут долго выдерживать нагрузки и выходят из строя. В итоге моторесурс самого совершенного роторного двигателя без ремонта не превышает 100 – 150 тыс. км пробега авто.

Кроме экономических и технических недостатков, роторный ДВС просто непривычен для водителей и механиков. Автомобиль с ним едет по-другому. Ввиду малой массы двигателя, у него нет запаса инерционной энергии. При малейшем сбросе педали газа машина быстро теряет скорость, что хорошо при торможении, но неудобно при движении. Приходится чаще переключать передачи. Таким двигателем нельзя тормозить, заглушенный двигатель даже на первой передаче легко проворачивается. Некоторым просто не нравится звук работающего роторного двигателя.

Возможно, у этого двигателя есть большое будущее. Поршневой мотор прошел долгий путь эволюции. Коленчатые валы и поршневые системы начали создаваться ещё на паровых двигателях.

У роторного варианта не было такой длительной эволюции и массовости производства, поэтому он имеет недоработки и слабые места. Важно то, что роторный двигатель может эффективно работать на газовом топливе, в том числе на водороде. Это может открыть ему большие перспективы в будущем.

Принцип работы роторного двигателя — видео

Бросить вызов конструкции поршневого двигателя внутреннего сгорания? Такое могло прийти в голову только самонадеянному безумцу. Несмотря на это, история знает несколько попыток переступить через нерациональное возвратно-поступательное движение классических двигателей внутреннего сгорания. На это были способны всего несколько человек в мире, но только один из них довел конструкцию своего механизма практически до совершенства. Но обо всем по порядку.

Содержание:

Роторно-лопастной двигатель

Идея такой тепловой машины была предложена еще в 1910 году в Германии. Но только на бумаге. Дальше идеи, чертежей и схем дело не пошло. Слишком спорной и фантастической казалась тогда конструкция двигателя, хотя теоретически, ничего сложного в ней не было. Двигатель представлял собой цилиндр, в котором соосно размещались два независимых вала. На каждом из них был жестко зафиксирован блок из двух лопастей. Лопасти делят цилиндр на четыре независимых камеры, а каждая камера за один оборот выполняет четыре рабочих такта. Именно это привлекло конструкторов — по идее, такой мотор мог заменить поршневой двигатель с 8 цилиндрами. Преимущества налицо:

  • компактные размеры;
  • высокий КПД;
  • не нужен сложный механизм газораспределения.

Эта конструкция не смогла быть воплощена в начале века, поэтому за нее взялись в 90-е. Технологии продвинулись, появились новые материалы, но… Ни одного рабочего экземпляра роторно-лопастного двигателя изготовлено не было, и существует он только, как утопический проект. Несмотря на то что в 2002 году появилась информация о возможных решениях технических проблем с реализацией этого проекта, до сих пор работы не проводятся и конструкция считается бесперспективной.

Роторно-поршневой двигатель Ванкеля

История этого роторного двигателя более жизнеутверждающая. Роторно-поршневой двигатель впервые начертил в 1924 году немецкий изобретатель Феликс Ванкель. Конструкция настолько поразила молодого изобретателя, что он решает во что бы то ни стало воплотить ее в жизнь. Сам он любил рассказывать, что необычный двигатель с ротором вместо поршней ему приснился еще в 1910 году и с тех пор он занимался разработкой чертежей. Патент на изобретение был получен только в 1936, но реализовать в мечту в металле конструктору не дала Вторая мировая война.

Только после того, как Ванкель возобновил работу над проектом в 50-е годы, будучи уже сотрудником известной мотоциклетной фирмы NSU, удалось построить первый работоспособный образец. Первоначально он работал на метаноле, но пройдя 100-часовые испытания беспрерывной работой на стенде, мотор был успешно переведен на бензин. К началу 60-х годов 11 компаний купили лицензию у Феликса Ванкеля на использование конструкции двигателя и, казалось, новую революционную идею ждет великое будущее. Это уже не был чисто теоретический проект или отдельно взятая действующая модель. Это был работоспособный агрегат, полностью готовый к серийному выпуску.

Как работает двигатель Ванкеля

Принцип работы роторного двигателя видео которого размещено на страничке, напоминает лопастной ротор. Только конструкция имеет гораздо более перспективные решения. Если в лопастном моторе вращение ротора было переменным и требовало преобразователя в постоянное вращение, то роторно-поршневой мотор спокойно передавал огромный крутящий момент прямо на механизм отбора мощности. Двигатель состоит из нескольких непростых в изготовлении, но надежных элементов:

  • ротор в виде треугольника с выпуклыми сторонами;
  • цилиндр сложного профиля (эпитрохоида, так называется эта кривая);
  • вал-эксцентрик, который принимает крутящий момент;
  • уплотнительные элементы на вершинах ротора-поршня.

Гениальная в своей простоте конструкция обходится вообще без кривошипов, механизма газораспределения, которые отбирают львиную долю КПД у обычного поршневого двигателя. Проблемными элементами, которые тормозили развитие роторного двигателя, стали уплотнители, но уже к началу 60-х годов проблема была решена и мотор пошел в серийный выпуск.

Автомобили с роторным двигателем

Первым серийным автомобилем с роторным мотором стал NSU Spider, а мировую славу Ванкелю принесла модель NSU Ro80. Автомобиль вышел в серию в 1967 году, а тираж ограничился 38 000 экземплярами. Тем не менее автомобиль установил новые стандарты в классе седанов с точки зрения дизайна и показывал отличные технические характеристики.

На него установили двухсекционный литровый роторный мотор, который выкручивал 115 лошадей, а максималка у автомобиля была за 180 км/ч. До сотни NSU разгонялся за 12 секунд. Все бы хорошо, но в эксплуатации автомобиля сквозило слишком много недостатков:

  1. Камера сгорания имела серповидную форму, вследствие чего плохо проветривалась, а это влияло на расход и на частые перегревы мотора.
  2. Постоянно работающая камера сгорания не остывала во время работы, а только накалялась, в результате чего материалы цилиндра просто не выдерживали термической нагрузки.
  3. Уплотнители создавали конструкторам большие проблемы, но еще большие проблемы они начертили экологам, потому что масло, которое необходимо для смазки стенок камеры сгорания не выгорало, существенно загрязняя выхлоп.
  4. Роторный двигатель не может работать на дизельном топливе. Слишком большие нагрузки.

ВАЗ с роторным двигателем

Как ни странно, сегодня только две компании в мире серьезно занимаются разработкой роторного двигателя — Мазда и ВАЗ. В Тольятти до недавнего времени работало СКБ РПД, которое разрабатывало роторные моторы для своих моделей 2105, 2107, 2108, 2109. Более того, в перспективе были роторные десятки, ВАЗ 415. На ВАЗе прошли испытания роторных двигателей мощностью от 40 до 220 лошадей и их в порядке испытаний устанавливали на Москвичи, РАФы, Таврии.

Данных о том, насколько завод готов серийно выпускать автомобили с роторно-поршневым мотором нет, но в принципе, были теоретически заявлены модели 2109 с РПД, максимальная скорость которой 210 км/ч. Хотя доступность роторных ВАЗовских моторов скорее носит декларативный характер, потому что даже ценников на них сегодня нет. Тем не менее конструкция роторного двигателя Ванкеля продолжает развиваться и одна из последних разработок Mazda RX8 развивает 250 сил мощности без наддува, а тюнинг-ателье при компании показало образец RX8 c мощностью 1000 лошадиных сил. Какие еще сюрпризы готовит нам роторный двигатель, остается только догадываться.

Роторно-поршневой двигатель описание фото видео история

Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.

Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель – механик-самоучка — стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.

Краткая биография изобретателя

Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве. Благодаря этому он пристрастился к чтению. Феликс изучал технические характеристики двигателей, автомобилестроение, механику самостоятельно. Знания он черпал из книг, которые продавались в лавке. Считается, что реализованная позднее схема двигателя Ванкеля (точнее, идея ее создания) посетила во сне. Неизвестно, правда это или нет, но точно можно сказать, что изобретатель обладал незаурядными способностями, тягой к механике и своеобразным

Плюсы и минусы

Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и различными частями корпуса. Вращательные движения ротор осуществляет помощью сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения. Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньше, чем обычный поршневой двигатель эквивалентной мощности.

Роторный двигатель имеет один главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса. С помощью этого контакта образуются камеры сгорания, или три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образованных камер сгорания все время меняется, напоминая действия обычного насоса. Все три боковых поверхности ротора работают, как поршень.

Внутри у ротора является шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубы в большей шестерни внутренние.

По той причине, что вместе с выходным валом ротор связан эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал. Выходной вал станет делать оборот три раза за каждый из оборотов ротора.

Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучше. Меньше масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.

Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет гораздо лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.

Все из частей роторного двигателя осуществляют непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как в поршней традиционного двигателя. Роторные двигатели внутренне сбалансированы. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя кажется намного более гладким и равномерным образом.

Двигатель Ванкеля имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель «Мазда» является первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.

Что это такое РПД?

В классическом четырехтактным двигателем одно и то же цилиндр используется для различных операций — впрыск, сжатие, сжигание и выпуска. В роторном же двигателе каждый процесс выполняется в отдельном отсеке камеры. Эффект мало чем отличается от разделения цилиндра на четыре отсека для каждой из операций.
В поршневом двигателе давление возникает при сгорании смеси заставляет поршни двигаться вперед и назад в своих цилиндрах. Шатуны и коленчатый вал преобразуют этот толкательной движение во вращательное, необходимое для движения автомобиля.
В роторном двигателя нет прямолинейного движения которое надо было бы переводить во вращательное. Давление образуется в одном из отсеков камеры заставляя ротор вращаться, это снижает вибрацию и повышает потенциальную величину оборотов двигателя. В результате всего большая эффективность, и меньшие размеры при той же мощности, что и обычного поршневого двигателя.

Как работает РПД?

Функцию поршня в РПД выполняет трьохвершинний ротор , преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса) обеспечивается парой шестерен, одна из которых жестко закреплена на роторе, а вторая на боковой крышке статора. Сама шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора из зубчатым колесом как бы обкатывается вокруг нее.
Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор. Взаимодействие этих шестерен обеспечивает целесообразное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2: 3, поэтому за один оборот эксцентрикового вала ротор возвращается на 120 градусов, а за полный оборот ротора в каждой из камер происходит полный четырехтактный цикл.
Газообмен регулируется вершиной ротора при прохождении ее через впускной и выпускной окно. Такая конструкция позволяет осуществлять 4-тактный цикла без применения специального механизма газораспределения.

Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаются к цилиндру центробежными силами, давлением газа и ленточными пружинами. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала Смесеобразование, воспаление , смазка, охлаждение, запуск — принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Технические характеристики роторно-поршневого двигателя

Все, что ты хотел знать о роторных двигателях, но стеснялся спросить у этих… ну, с гаечными ключами

Доступный ликбез к 50-летию легендарной Mazda Cosmo Sport.

Ветераны гаражных посиделок всегда вспоминают роторно-поршневые двигатели (РПД) с придыханием и делают лица, как на картине Перова «Охотники на привале». Отставив кружку на пыльный капот, кто-нибудь непременно расскажет, как у друга брата соседа знакомый в девяносто пятом пытался уйти на свежем «биммере» (тридцать четвертая, мотор M50 «плита»!) от роторной «пятерки» «Жигулей». Безуспешно, разумеется. Присутствующие при этом должны делать осведомленно-понимающие лица. Случись тебе оказаться в этом уютном гараже с постерами «Совтрансавто», ты бы, вероятно, не спросил, что это за «эр-пэ-дэ» такое, чтобы не ловить на себе взгляды, полные презрения и разочарования в человеке, который и дистиллированную воду в аккумулятор никогда не доливал.

Впрочем, эти косые взгляды стоит понимать так: мало кто из тех, кто мечтательно закатывает глаза при упоминании «роторов», готов объяснить тебе, чем они отличаются от обычных поршневых моторов. Ну а мы попробуем.

Начнем сразу с анимации, так нагляднее. Только не с роторного двигателя, а как раз с обычного поршневого. В его цилиндрах горит смесь воздуха и горючего, обеспечивая возвратно-поступательное (вверх-вниз) движение поршней, которое преобразуется во вращательное движение коленчатого вала.

В роторном двигателе кинематика иная. В полости корпуса на эксцентрическом валу вращается ротор — тело, очерченное тремя дугами, что-то вроде треугольника с выпуклыми сторонами (точнее, это треугольник Рёло — почитай на досуге). Сам корпус двигателя называют по-разному: статором, картером или просто секцией. Внутри него и происходит весь рабочий цикл, те же такты (впуск, сжатие, рабочий ход и выпуск отработавших газов), что и в поршневом двигателе.

Но на этом сходство с обычным двигателем заканчивается. Цилиндров в роторно-поршневом моторе нет: все такты происходят в камере постоянно меняющегося объема, образованного неподвижными стенками секции и движущимся ротором — каждая вершина «треугольника» постоянно соприкасается с внутренней поверхностью корпуса, обеспечивая герметичность.

Это постоянное трение уже само по себе проблема. Легко сказать — герметичный контакт трущихся деталей! Но надежное, а тем более долговечное уплотнение ротора и статичной секции даже с сегодняшними технологиями создать весьма сложно. Это, пожалуй, главный врожденный недостаток РПД. Неполная герметичность контакта влечет за собой высокий расход масла и бензина, а также грозит высокой токсичностью выбросов из-за большой доли несгоревших углеводородов. Очевидна и другая проблема: малый ресурс двигателя. Но все же оригинальную конструкцию решили довести до ума…

Роторно-поршневой двигатель иногда называют «ванкелем» — по имени одного из его создателей. Доктор Феликс Ванкель совместно с Вальтером Фройде разработал прототип РПД в 1958 году для мотоцикла немецкой марки NSU. Эта фирма давно утратила самостоятельность и фактически растворилась в структуре сегодняшнего концерна Volkswagen. Роторные технологии надолго пережили свою колыбель и в конце пятидесятых казались невероятно перспективными: патент на двигатель Ванкеля купили и Mercedes-Benz, и Citroen, и даже ВАЗ. Правопреемник NSU, марка Audi, тоже построила несколько прототипов.

Справедливый вопрос: чем так манила инженеров концепция с врожденными слабыми местами? Огромными преимуществами, помноженными на веру, что все сложности решаемы. Перспективы действительно манили. Если в обычном поршневом двигателе вращательное движение коленчатого вала обеспечивается возвратно-поступательным движением поршней, то роторная концепция предлагает только вращательное движение и поршня-ротора, и эксцентрического вала, что резко уменьшает число движущихся деталей. В результате сокращается число трущихся пар, источников шума и вибрации. Двигатель механически сбалансирован.

Кроме того, в РПД отсутствует привычный механизм газораспределения. Впускные и выпускные отверстия («окна») открываются и закрываются самим вращающимся ротором. То есть отпадает необходимость и в клапанах, а вместе с ними — в приводном ремне, распредвалах, коромыслах, пружинах клапанов. Просто взгляни еще раз на анимацию поршневого ДВС и мысленно убери все, что выше снующих вверх-вниз поршней. То-то же!

В обычном поршневом двигателе деталей больше на несколько сотен. Роторная концепция также предлагает высокую удельную мощность и чрезвычайную компактность: РПД в 1,5—2 раза меньше поршневого безнаддувного мотора аналогичной мощности.

И все же сложности с массовым производством «роторов» оказались чересчур значительны. Единственной компанией, которая более 50 лет упорно совершенствовала оригинальную и капризную концепцию, стала Mazda. В 1961 году японцы купили у NSU патент и сам двигатель.

Первый серийный РПД из Японии был двухсекционным 1,0-литровым и развивал мощность 110 л.с. И это, заметь, в 1967 году! Двухроторная схема оказалась оптимальной для серийных легковых машин: она не намного сложнее односекционной, но обеспечивает наиболее равномерный крутящий момент, а заодно позволяет уменьшить объем камеры сгорания и, как следствие, долю несгоревшего топлива.

Двигатель дебютировал на изящном купе Mazda Cosmo Sport. За ним последовали другие интересные модели вроде Luce Rotary Coupe или Cosmo 1981 года, но самой славной стала модель RX-7. Первое поколение появилось в 1978 году. Его 1,1-литровый агрегат развивал 115 л.с.

Ссылка на основную публикацию